期刊文献+

基于重建方法的图像超分辨率技术发展现状分析与方向预测 被引量:3

Current Status Analysis and Future Directions Prediction for Image Super-Resolution Technique Based on Reconstructing Approach
下载PDF
导出
摘要 图像超分辨率(super resolution,SR)重建技术是利用一帧或多帧低分辨率(low resolution,LR)图像的信息来重建一帧清晰的高分辨率(high resolution,HR)图像的技术,是图像处理中的研究热点。介绍了基于重建方法的图像SR技术的基本原理及数学模型,以频域方法和空域方法作为分类依据,分别阐述了图像SR重建技术的经典方法和最新进展,并对各类算法的优缺点进行了系统的分析和总结,最后指出了基于重建方法的图像SR技术的研究方向。 Image super-resolution(SR)reconstruction technique is how to produce a clearly high resolution(HR)image from the information of one or several low resolution(LR)images,and it has been received increasing attention from the image processing community.In the paper, the fundamental principles and mathematical models of SR technology based on reconstruction were described firstly,and the history and state-of-art of image SR reconstruction were stated briefly according to the classification between the frequency domain method and the space domain method.Secondly,advantages and defects of different methods were analyzed and summarized systematically.Finally,the further research directions for image SR technique of reconstructing based the approach were proposed.
出处 《辽宁石油化工大学学报》 CAS 2014年第2期69-73,共5页 Journal of Liaoning Petrochemical University
基金 国家自然科学基金资助项目(61273078)
关键词 超分辨率 图像重建 对比分析 图像处理 正则化 Super-resolution Image reconstruction Comparative analysis Image processing Regularization
  • 相关文献

参考文献29

  • 1Park S C,Park M K,Kang M G.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 2Harris J L.Diffraction and resolving power[J].Journal of the Optical Society of America,1964,54(7):931-936.
  • 3Goodman J W.Introduction to fourier optics[M].New York:McGraw-Hill,1968.
  • 4Tsai R Y,Huang T S.Multi-frame image restoration and registration[J].Advances in Computer Vision and Image Processing,1984,1:101-106.
  • 5Kim S P,Bose N K,Valenzuela H M.Recursive reconstruction of high resolution image from noisy undersampled multiframes[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1990,38(6):1013-1027.
  • 6Bose N K,Kim H C,Valenzuela H M.Recursive implementation of total least squares algorithm for image reconstruction from noisy,undersampled multiframes[J].Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,Minneapolis,1993,15(1):269-272.
  • 7Rhee S H,Kang M G.Discrete cosine transform based regularized high-resolution image reconstruction algorithm[J].Optical Engineering,1999,38(8):1348-1356.
  • 8Ei-Khamy S E,Hadhoud M M,Dessouky M I,et al.Wavelet fusion:a tool to break the limits on LMMSE image super-resolution[J].International Journal of Wavelets,Multiresolution and Information Processing,2006,4(1):105-118.
  • 9Ji H,Fermuller C.Robust wavelet-based super-resolution reconstruction:theory and algorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence 2009,31(4):649-660.
  • 10Irani M,Peleg S.Improving resolution by image registration[J].CVGIP:Graphical Models and Image Processing,1991,53(5):231-239.

二级参考文献4

  • 1许东 吴铮.基于MATLAB6.x的系统分析与设计[M].西安:西安电子科技大学出版社,2002.19--24.
  • 2刘永强.算法语言与计算方法基础[M].北京:科学出版社,2005.107.
  • 3Box G E P.Time series analysis[J].Forecasting and control,1970(13):191-203.
  • 4Nielson H.R.Theory of the back propagation neural network[J].IEEE UCNN,1989(1):593-606.

共引文献7

同被引文献17

  • 1Seong J K, Jong H A, Changhoon Y. Adaptive motion estimation algorithm for MPEG-4 video coding insignal processing and its applications~C~//Proceedings of Seventh International Symposium, IEEE Publications. Piscataway: New Jersey Press, 2003:141-144.
  • 2Hyuk L, Jechang J. Content adaptive binary block matching motion estimation algorithm[C~//Proceedings of IEEE International Midwest Symposium in Circuits and Systems, IEEE Publications. Piscataway.. New Jersey Press, 2010: 355-358.
  • 3Wu X M, Xu W Z, Zhu N H, et al. A fast motion estimation algorithm for H.264EC~//Proceedings of International Conference on Signal Acquisition and Processing, IEEE Publications. Piscataway= New Jersey Press, 2010:112 116.
  • 4Koga T, Iinuma K, Hirano A. Motion compensatedinterframe coding for video conferencingFC~//Proceedings of the National Telecommunications Conference, Proc NTC81. Los Angeles : New Orleans LA Press, 1981 .. 961-965.
  • 5Po L, Ma W. A novel four-step search algorithm for fast block motion estimation[J]. IEEE Transactions on Circuits System Video Technology, 1996,6(3) :313-317.
  • 6Li R, Zeng B, Liou M. A new three-step search algorithm for block motion estimationFJ~. IEEE Transactions on Circuits System Video Technology, 1994, 4(4):438-442.
  • 7Zhu S, Ma K. A new diamond search algorithm for fast block matching motion estimation[J]. IEEE Transactions on Image Processing, 2000, 9(2) ..287-290.
  • 8Nie Y, Ma K K. Adaptive rood pattern search for fast block-matching motion estimation[J]. IEEE Transactions on Image Processing, 2002,11 (12) : 1442-1448.
  • 9Chok K C, Lai M P. Normalized partial distortion search algorithm for block motion estimation[J]. IEEE Transactions onCircuits and System For Video Technology, 2000,10(3):417-422.
  • 10Avishek S, Jayanta M, Shamik S. A neighborhood elimination approach for block matching in motion estimation[J]. Signal Processing: Image Communication, 2011,26(10) ..438-454.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部