期刊文献+

网络商品评论的特征–情感词本体构建与情感分析方法研究 被引量:35

Research on Construction of Feature-Sentiment Ontology and Sentiment Analysis
原文传递
导出
摘要 【目的】解决情感分析领域使用通用情感词典进行情感分析时,在特定领域内无法识别领域专用情感词,以及同一情感词描述不同特征时可能表达出不同情感倾向的两个问题。【方法】提出一种基于领域专用情感词的网络评论情感分析方法。该方法构建特征–情感词本体,利用本体对网络上的产品评论进行情感分析。并与基于Senti-HowNet词典的情感分析方法进行对比。【结果】本文方法在特征层的情感倾向分析的准确率和召回率都有显著提高。【局限】本文方法中的本体需要尽可能完整的特征词集和情感词集,并且情感分析结果好坏直接依赖于本体的构建是否完善;由于网络文本的不规范性,特征词和情感词抽取以及情感分析的过程都不考虑句法结构;数据分析过程对问题进行了简化,仅考虑特征粒度的情感倾向,未考虑连词等对情感倾向有影响的其他因素。【结论】对专用情感词和通用情感词进行分类管理,解决了两个问题,情感分析结果得到提高。 [Objective] In a specific domain, sentiment analysis, mostly based on general lexicon, cannot identify the context-specific sentiment belonging to the domain. Also, the same word in the specific domain shows different polarities (positive, negative, neutral) when describing different properties. The objective of this paper is to solve the problems described above. [Methods] A sentiment analysis approach based on domain-oriented specific sentiment phrases is proposed. By developing feature-sentiment Ontology, general sentiment and specific sentiment can be divided during the process of sentiment analysis. [Results] The proposed method shows fairly better results of precision and recall in terms of phrase-level sentiment analysis. [Limitations] In order to get better analysis, the Ontology should cover the concepts in the related field as much as possible and should be well-built; the authors ignore the syntactic rules during the concept extraction and sentiment analysis, because the product comments are not normative; in the phase of sentiment analysis, the authors assume that the context like conjunction would not affect the polarity. [Conclusions] The new method not only makes improvement on sentiment analysis by solving the problem described above, but also proposes a new way for sentiment lexicon management.
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第5期74-82,共9页 New Technology of Library and Information Service
基金 国家社会科学基金项目"用户评论情感分析及其在竞争情报服务中的应用研究"(项目编号:11CTQ022)的研究成果之一
关键词 情感分析 专用情感词 本体 网络评论 Sentiment analysis Domain sentiment phrase Ontology Online review
  • 相关文献

参考文献17

  • 1Pang B, Lee L. Opinion Mining and Sentiment Analysis [J]. Foundations and ']?rends in Information Retrieval, 2008, 2(1-2): 1-135.
  • 2Tong R M. An Operational System for Detecting and Tracking Opinions in Online Discussion[C]. In: Working Notes of the ACM SIGIR 2001 Workshop on Operational Text Classification. New York: ACM, 2001: 1-6.
  • 3Kim S M, Hovy E. Determining the Sentiment of Opinions[C]. In: Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2004.
  • 4张成功,刘培玉,朱振方,方明.一种基于极性词典的情感分析方法[J].山东大学学报(理学版),2012,47(3):47-50. 被引量:52
  • 5Zhou L, Chaovalit P. Ontology- Supported Polarity Mining [J]. Journal of the American Society for Information Science and Technology, 2008, 59(1): 98-110.
  • 6Pefialver-Martinez I, Valencia-Garcia R, Garcia-Sinchez F. Ontology-Guided Approach to Feature-Based Opinion Mining [C]. In: Proceedings of the 16th International Conference on Natural Language Processing and Information Systems. Berlin, Heidelberg: Springer -Verlag, 2011 : 193-200.
  • 7Yin P, Wang H, Guo K. Feature-opinion Pair Identification of Product Reviews in Chinese: A Domain Ontology Modeling Method [J]. New Review of Hypermedia and Multimedia. 2013, 19(1): 3-24.
  • 8张清亮,徐健.网络情感词自动识别方法研究[J].现代图书情报技术,2011(10):24-28. 被引量:12
  • 9Hu M, Liu B. Mining and Summarizing Customer Reviews[C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004: 168-177.
  • 10Salton G, McGill M J. Introduction to Modem Information Retrieval [M]. New York, NY, USA: McGraw-Hill Inc.,1986.

二级参考文献7

共引文献62

同被引文献368

引证文献35

二级引证文献417

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部