期刊文献+

图像检索技术在“经典阅读”教学系统中的实现与应用 被引量:1

Implementation and Application of Image Retrieval Technology in “Classic Reading” Teaching System
原文传递
导出
摘要 【目的】扩展"经典阅读"教学系统的图像检索途径,提高经典名著教学资源的利用率。【应用背景】"经典阅读"系统是基于阅读学分机制的教学体系创新平台,增加图像检索功能是对已有文本检索的补充和拓展,能够提升教学效果。【方法】建立基于特征语义的图像检索模型进行图像特征值提取、归一化和相似性度量,实现检索请求提交、图像检索、结果反馈和图片管理等功能模块。【结果】实现图像分类自动化,能够通过相关图像检索到相应图书,准确率介于92%到100%之间。【结论】提升"经典阅读"教学系统的用户体验,改善"经典阅读"教学效果。 [Objective] This paper trends to expand retrieval approach in "Classic Reading" Teaching System and improve utilization of classical teaching resources. [Context] "Classic Reading" Teaching System is a credit-based innovation platform on teaching system, and adding image retrieval function can greatly extend the existing text-based retrieval and improve teaching effects. [Methods] This paper establishes the Semantic-Based Image Retrieval Model including extracting features, vector normalization and similarity measurement, realizing four modules including query-submit, image-retrieval, result-feedback and image management. [Results] The images in the platform are classified automatically and students can find the book with a related image, and the precise of image retrieval lays between 92% and 100%. [Conclusions] It can improve user experience as well as the teaching effects of "Classic Reading".
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第5期90-95,共6页 New Technology of Library and Information Service
基金 国家高技术研究发展计划(863计划)"基于eID的典型示范应用"(项目编号:2012AA01A404) 北京邮电大学2013年"经典阅读"教改项目"立体互动式"经典阅读"教学体系创新平台的构建"的研究成果之一
关键词 特征语义 图像检索 特征向量 经典阅读 素质教育 Feature-Semantical Image retrieval Feature vectors Classic reading Quality education
  • 相关文献

参考文献19

  • 1阿斯艳.哈米提,阿不都热西提.哈米提.基于文本的图像检索与基于内容的图像检索技术的比较研究[J].首都师范大学学报(自然科学版),2012,33(4):6-9. 被引量:16
  • 2Stehling R O, Nascimento M A, Falcao A X. An Adaptive and Efficient Clustering-Based Approach for Content-Based Image Retrieval in Image Databases[C]. In: Proceedings of 2001 International Symposium on Database Engineering & Applications, Grenoble, France. IEEE, 2001: 356-365.
  • 3Swets D L, Weng J J. Efficient Content-based Image Retrieval Using Automatic Feature Selection Computer Vision[C]. In: Proceedings of International Symposium on Computer Vision, Coral Gables, FL, USA. IEEE, 1995: 85-90.
  • 4Heczko M, Hinneburg A, Keim D A, et al. Multiresolution Similarity Search in Image Databases [J].Multimedia Systems, 2004, 10(1): 28-40.
  • 5Cho S B, Lee J Y. A Human-oriented Image Retrieval System Using Interactive Genetic Algorithm [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2002, 32(3): 452-458.
  • 6Xu X, Zhang L, Yu Z, et al. Image Retrieval Using Multi-granularity Color Features [C]. In: Proceedings of International Conference on Audio, Language and Image Processing (ICALIP'08), Shanghai, China. IEEE, 2008: 1584-1589.
  • 7Verma B, Kulkami S. A Fuzzy-neural Approach for Interpretation and Fusion of Color and Texture Features for CBIR Systems [J]. Applied Soft Computing, 2004, 5(1): 119-130.
  • 8Gagaudakis G, Rosin P L. Incorporating Shape into Histograms for CBIR [J]. Pattern Recognition, 2002, 35(1): 81-91.
  • 9Nascimento M A, Sridhar V, Li X. Effective and Efficient Region-based Image Retrieval [J]. Journal of VisualLanguages & Computing, 2003, 14(2): 151-179.
  • 10Alemu Y, Koh J, Ikram M, et al. Image Retrieval in Multimedia Databases: A Survey [C]. In: Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing(IIH-MSP'09), Kyoto, Japan. IEEE, 2009: 681-689.

二级参考文献24

  • 1Jain A K,Vailaya A. Image Retrieval Using Color and Shape[J].Pattern Recognition,1996,29(8):1233-1244.
  • 2Zahn C T,Roskies R Z. Fourier Descriptors for Plane Closed Curves[J].IEEE Transactions on Computers,1972,(21):269-285.
  • 3Rui Y,et al.Modified Fourier Descriptor for Shape Representation:A Practical Approach[C].Proc.1st International Workshop on Image Database and Multimedia Search,Amsterdam,the Netherlands,1996.
  • 4Liu W Y,Wang T,Zhang H J.A Hierarchical Characterization Scheme for Image Retrieval[C].Proc.7th IEEE International Conference on Image Processing (ICIP 2000),Vancouver,Canada,2000.
  • 5Chen Y X,Wang J Z.A Region-based Fuzzy Feature Matching Approach to Content-based Image Retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1252-1267.
  • 6Wang J Z.Pathfinder:Multiresolution Region-based Searching of Pathology Images Using IRM[J]. Journal of American Medical Informatics Association,Symposium Supplement,2000,2000suppl:883-887 (LCDS).
  • 7Jain A K,Vailaya A.Shape-based Retrieval:A Case Study with Trademark Image Databases[J].Pattern Recognition,1998,31(9):1369-1390.
  • 8Hu M K.Visual Pattern Recognition by Moment Invariants[J].IRE Transactions on Information Theory,1962,IT-8(2):179-187.
  • 9Belkasim S O,Shridhar M,Ahmadi M.Pattern Recognition with Moment Invariant:A Comparative Study and New Results[J].Pattern Recognition,1991,24:1117-1138.
  • 10J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.

共引文献237

同被引文献6

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部