期刊文献+

静止无功补偿器在青藏直流工程中的应用 被引量:11

Application of Static Var Compensator in Qinghai-Tibet HVDC Project
下载PDF
导出
摘要 拉萨换流站弱系统连接导致所用的无功补偿设备容量较小,数量较多,引起投资增加,为此,建立了带有静止无功补偿器(SVC)的青海—西藏(青藏)交直流工程PSCAD仿真模型,仿真各种直流运行方式、各水平年下不同容量无功设备投切引起的电压波动,以寻找满足要求的无功补偿分组设置。通过大量的仿真,确定了该期无功设备分组容量及远期分组容量,同时得到以下结论:直流系统带有SVC,不但可以使无功设备容量大幅增加,而且能够满足无功补偿投切引起的电压波动要求。最后,通过PSCAD仿真确定了SVC的控制策略。将所得研究结果应用于青藏直流工程,由于安装了SVC,无功分组的容量由每组25 MVA提高到45 MVA,在投切滤波器时,换流母线的暂稳态电压波动也满足无功导则的要求,表明制定的SVC控制策略提高了工程运行的可靠性和安全性。工程实际运行情况证明了研究结果的正确性和可行性,对今后直流工程的设计和研究具有较大的参考价值。 The weak ac system connection of Tibet Power Grid leads to small capacity and more installed number of reactive power compensation apparatus, which will cause increasing investment, thus we established a simulation model of Qinghai-Tibet ac and dc systems with static var compensator(SVC) by PSACD to calculate voltage fluctuation caused by switching reactive power compensation apparatus of different capacity under different operation modes and in different years, so as to figure out suitable reactive power compensation arrangement. Meanwhile, we determined the reactive power capacity of sub-bank for the near term and the future term by plenty of simulation. It is concluded that, the capacity of sub-bank increases from the original 25 MVA to 45 MVA and the temporary steady-state voltage fluctuation of commutation bus can meet the requirements of reactive power guide, indicating that the strategy improves stability and safety of the project. The actual operation situation proves validity and feasibility of the proposed strategy, which provides a reference for future HVDC project design.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第5期1553-1558,共6页 High Voltage Engineering
关键词 弱交流系统 直流输电 短路比 静止无功补偿器 无功补偿 电压波动 weak AC system HVDC transmission short current ratio SVC reactive compensation voltage fluctuation
  • 相关文献

参考文献23

  • 1浙江大学直流输电科研组.直流输电[M].北京:水利电力出版社,1982.
  • 2北京网联直流工程技术有限公司.《青海~西藏直流联网工程功能规范书》[R].北京:北京网联直流工程技术有限公司,2010.
  • 3Franken B. Analysis of HVDC converters connected to weak Ac sys- tems[J]. IEEE Transactions on Power System, 1990, 5(1): 235-242.
  • 4Sato M, Honjo N, Yamaji K. HVDC converter conlrol for fast power recovery after AC system fault[J]. IEEE Transactions on Power Deli- very, 1997, 12(3): 1319-1326.
  • 5Nayak O B, Gole A M, Chapman D G. Dynamic performance of static and synchronous compensators at an HVDC inverter bus in a very weak AC system[J]. IEEE Transactions on Power Systems, 1994, 9(4): 1350-1357.
  • 6Zhang Y, Menzies R W, Nayak O B. Dynamic performance of a station at an HVDC inverter feeding a very weak AC system[J]. IEEE Trans- actions on Power Delivery, 1996, 11(2): 958-964.
  • 7周长春,徐政.联于弱交流系统的HVDC故障恢复特性仿真分析[J].电网技术,2003,27(11):18-21. 被引量:97
  • 8林伟芳,汤涌,卜广全.多馈入交直流系统短路比的定义和应用[J].中国电机工程学报,2008,28(31):1-8. 被引量:217
  • 9邱大强,李群湛,南晓强.电网不对称故障下VSC-HVDC系统的直接功率控制[J].高电压技术,2012,38(4):1012-1018. 被引量:23
  • 10CIGRE WG 14.07, IEEE WG 15.05.Guide for planning DC links terminating at AC system locations having low short circuit capaci- ties[J]. Electra, 1992, 142(1): 119-123.

二级参考文献119

共引文献567

同被引文献141

引证文献11

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部