期刊文献+

Aerosol Type Identification Using PARASOL Multichannel Polarized Data 被引量:2

Aerosol Type Identification Using PARASOL Multichannel Polarized Data
下载PDF
导出
摘要 PARASOL(Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-channel and multi-directional polarized data for different aerosol types were compared.The PARASOL polarized radiance data at 490 nm,670 nm,and 865 nm increased with aerosol optical thickness(AOT) for fine-mode aerosols;however,the polarized radiances at 490 nm and 670 nm decreased as AOT increased for coarse dust aerosols.Thus,the variation of the polarized radiance with AOT can be used to identify fine or coarse particle-dominated aerosols.Polarized radiances at three wavelengths for fine-and coarse-mode aerosols were analyzed and fitted by linear regression.The slope of the line for 670 nm and 490 nm wavelength pairs is less than 0.35 for dust aerosols.However,the value for fine-mode aerosols is greater than 0.60.The Support Vector Machine method(SVM) based on 12 vector features was used to discriminate clear sky,coarse dust aerosols,fine-mode aerosols,and cloud.Two cases were given and validated by AErosol RObotic NETwork(AERONET) measurements,MODIS(Moderate Resolution Imaging Spectroradiometer) FMF(Fine Mode Fraction at 550 nm) images,PARASOL RGB(Red Green Blue) images,and CALIOP(Cloud-Aerosol Lidar with Orthogonal Polarization) VFM(Vertical Feature Mask) data. PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Ob- servations from a Lidar) multi-channel and mul- ti-directional polarized data for different aerosol types were compared. The PARASOL polarized radiance data at 490 nm, 670 nm, and 865 nm increased with aerosol optical thickness (AOT) for fine-mode aerosols; however, the polarized radiances at 490 nm and 670 nm decreased as AOT increased for coarse dust aerosols. Thus, the vari- ation of the polarized radiance with AOT can be used to identify fine or coarse particle-dominated aerosols. Polar- ized radiances at three wavelengths for fine- and coarse-mode aerosols were analyzed and fitted by linear regression. The slope of the line for 670 nm and 490 nm wavelength pairs is less than 0.35 for dust aerosols. However, the value for fine-mode aerosols is greater than 0.60. The Support Vector Machine method (SVM) based on 12 vector features was used to discriminate clear sky, coarse dust aerosols, fine-mode aerosols, and cloud. Two cases were given and validated by AErosol RObotic NETwork (AERONET) measurements, MODIS (Mod- erate Resolution Imaging Spectroradiometer) FMF (Fine Mode Fraction at 550 nm) images, PARASOL RGB (Red Green Blue) images, and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) VFM (Vertical Feature Mask) data.
出处 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第3期224-229,共6页 大气和海洋科学快报(英文版)
基金 supported by the National Basic Research Program of China (Grant Nos.2010CB950804 and 2013CB955801) the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues (Grant No.XDA05040202)
  • 相关文献

参考文献12

  • 1Bellouin, N., O. Boucher, D. Tanre, et al., 2003: Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations, Geophys. Res. Lett., 30(14), 1748, doi: 10.1029/2003gt017121.
  • 2Deschamps, P. Y., F. M. Brdon, and M. Leroy, et al., 1994: The POLDER mission: Instrument characteristics and scientific ob- jectives, IEEE Trans. Geosci. Remote Sens., 32, 598-615.
  • 3Duan, K. B., and S. S. Keerthi, 2005: Which is the best multiclass SVM method? An empirical study, Muir. Classiler Sys., 3541, 278-285.
  • 4Dubovik, O. and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties fi'om Sun and sky radiance measurements, .I. Geophys. Res., 105(DI 6):20673-20696.
  • 5Giles, D. M., B. N. Holben, T. E Eck, et al., 2012: An analysis of AERONET aerosol absorption properties and classificationsrepresentative of aerosol source regions, .1. Geophys. Res., !17(D17), doi:10. I029/2012jd018127.
  • 6nigurashi, A., and T. Nakajima, 2002: Aerosol type classification with seawifs four-channel radiance data, in: llth Co/brence on Atnlospheric Radiation, OGDEN, UT, 3-7 June, 2002, 59-62.
  • 7Hsu, N. C., S. C. Tsay, M. D. King, et al., 2004: Aerosol properties over bright-reflecting source regions, IEEE Trans. Geosci. Remote Sens., 42(3), 557-569, doi: 10.1109/Tgrs.2004.824067.
  • 8Jeong, M. J., and Z. Q. Li, 2005: Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and total ozone mapping spectrometer, a Geophys. Res., 110(D 10), doi: 10.1029/2004jd0 04647.
  • 9Martonchik, J. V., D. J. Diner, R. A. Kahn, et al., 1998: Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging, 1EEE Trans. Geosci. Remote Sens., 36(4), 1212-1227.
  • 10Niang, A., F. Badran, C. Moulin, et al., 2006: Retrieval of aerosol type and optical thickness over the Mediterranean from SeaWiFS images using an automatic neural classification method, Remote Sens. Environ., 100(1), 82-94.

同被引文献31

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部