期刊文献+

工业无线网络路由及调度联合极值优化 被引量:5

Joint Routing and Scheduling Optimization in Industrial Wireless Networks Using an Extremal Dynamics Algorithm
原文传递
导出
摘要 以当前主流工业无线网络协议为研究对象,运用极值动力学方法优化网络路由与调度问题.在研究工业网络协议基础上,分析了其跨层优化的可行性.以网络实时性性能及网络寿命为多优化目标,建立符合工业无线网络特性和需求的整数规划问题(ILP)模型.进而提出一种基于极值优化的方法,改进算法步骤,选取适值函数并设计变异规则,首次将该方法用于求解无线网络调度问题.数值算例结果表明,使用本文算法能快速有效地得到优化结果,与简单调度方法相比,明显改善了网络功耗及延时性能,并体现两者间的权衡关系,从而可根据具体需求灵活配置. Focusing on current industrial wireless network( IWN) protocols,extremal dynamics optimization is applied to solving joint routing and link scheduling problems.The feasibility of cross-layer optimization is analyzed after studying the IWN protocols.An integer linear programming( ILP) problem is presented,which meets the characteristics and needs of IWN by taking real-time performance and lifetime as MAX-MIN objectives.The study proposes and uses a technique based on extremal optimization by designing the fitness assignment strategy,mutation rules,and operating process.The technique is first used to solve scheduling optimization problems in the wireless networks.Numerical results show that the method provides significantly better results more quickly than other simple scheduling methods,and the networks can be flexibly configured according to the specific performance needs.The trade-off between energy consumption and delay is also presented.
出处 《信息与控制》 CSCD 北大核心 2014年第2期152-158,共7页 Information and Control
基金 国家科技支撑计划资助项目(2012BAF05B00)
关键词 极值优化(EO) 路由 链路调度 工业无线网络 extremal optimization(EO) routing link scheduling industrial wireless network
  • 相关文献

参考文献2

二级参考文献48

  • 1Alava, M., Ardelius, J., Aurell, E., Kaski, P., Krishnamurthy, S., Orponen, E, Seitz, S., 2008. Circumspect descent prevails in solving random constraint satisfaction problems. PNAS, 105(40): 15253-15257. [doi:10.1073/pnas.0712263105].
  • 2Altarelli, F., Monasson, R., Smerjian, G., Zamponi, F., 2009. A Review of the Statistical Mechanics Approach to Random Optimization Problems. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press, the Netherlands.
  • 3Bak, P., Sneppen, K., 1993. Punctuated equilibrium and criti cality in a simple model of evolution. Phys. Rev. Lett., 71(24):4083-4086. [doi:10.1103/PhysRevkett.71.4083].
  • 4Bak, P., Tang, C., Wiesenfeld, K., 1987. Self-organized criti cality: an explanation of the I/f noise. Phys. Rev. Lett., 59(4):381-384. [doi:10.1103/PhysRevLett.59.381].
  • 5Barthel, W., Hartmann, A.K., Weigt, M., 2003. Solving satisfiability problems by fluctuations: the dynamics of sto chastic local search algorithms. Phys. Rev. E, 67(6): 066104. [doi:10.1103/PhysRevE.67.066104].
  • 6Biere, A., Heule, M., Maaren, H., Walsh, T., 2009. Handbook of Satisfiabifity. IOS Press, the Netherlands.
  • 7Biroli, G., Cocco, S., Monasson, R., 2002. Phase transitions and complexity in computer science: an overview of the statistical physics approach to the random satisfiability problem. Phys. A, 306:381-394. [doi:10.1016/S0378-4371 (02)00516-2].
  • 8Boettcher, S., Percus, A.G., 2000. Nature's way of optimizing. Artif Intell., 119(1-2):275-286, [doi:10.10161S0004-3702 (00)00007-2].
  • 9Boettcher, S., Percus, A.G., 2001a. Optimization with extremal dynamics. Phys. Rev. Lett., 86(23):5211-5214. [doi:10. 1103/PhysRevLett.86.5211].
  • 10Boettcher, S., Percus, A.G., 200lb. Extremal optimization for graph partitioning. Phys. Rev. E, 64(2):026114. [doi:10. 1103/PhysRevE.64.026114].

共引文献11

同被引文献52

  • 1Akyildiz I F, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks[J]. IEEE Communication Magazine, 2002, 40(8): 102-114.
  • 2Wang B B, Ray Liu K J. Advances in cognitive radio networks: A survey[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(1): 5-23.
  • 3Akyildiz I F, Lo B F, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks: A survey[J]. Physical Communication, 2011, 4(1): 40-62.
  • 4Vijay G, Bdira E B A, Ibnkahla M. Cognition in wireless sensor networks: A perspective[J]. IEEE Sensor Journal, 2011, 11(3): 582-592.
  • 5Jamal A, Tham C K, Wong W C. Event detection and channel allocation in cognitive radio sensor networks[C]//IEEE International Conference on Communication Systems (ICCS). Piscataway, NJ, USA: IEEE, 2012: 157-161.
  • 6Deng R L, Chen J M, Yuen C, et al. Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2012, 61(2): 716-725.
  • 7Hareesh K, Poonam S. An energy efficient hybrid co-operative spectrum sensing technique for CRSN[C]//International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s). Piscataway, NJ, USA: IEEE, 2013: 438-442.
  • 8Quan Z, Cui S, Sayed A H, et al. Optimal multiband joint detection for spectrum sensing in cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 1128-1140.
  • 9Liang Y C, Zeng Y H, Peh E C Y, et al. Sensing-throughput tradeoff for cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(4): 1326-1337.
  • 10Zeng Y H, Peh E C Y, Liang Y C, et al. Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view[J]. IEEE Transactions on Vehicular Technology, 2009, 58(9): 5294-5299.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部