期刊文献+

基于视觉注意模型化计算的行人目标检测

Pedestrian detection based on modeling computation of visual attention
下载PDF
导出
摘要 提出一种用于行人目标检测的视觉注意模型化计算方法。在提取行人目标显著表象特征的基础上,通过多尺度分解后,各尺度图像之间的差减与归一化运算构成显著图;同时,根据肤色高斯似然计算模型,提取行人目标特有的皮肤颜色特征图,再通过分块图像中分类像素点累计计数与阈值化均值滤波相结合的方法精化肤色提取结果以构成导引图;进而提出一种将显著图与导引图通过有偏置的加权整合策略实现目标区域的准确预测。通过Penn-Fudan行人数据库和实拍视频的实验结果表明,所提方法的检测准确率优于现有其他计算模型,且相对传统目标检测算法,能够大幅度减少时间开销,提高检测效率。 A pedestrian detection method is proposed based on the modeling computation oI visual attention. First, a saliency map is generated through multi-scale center-surround computation and normalization, based on extraction of saliency feature of pedestrian object. Meanwhile, a skin color feature map is computed based on the skin color Gaussian model to express the unique character of pedestrian object. A guided map is achieved through refining the skin color features by implementing accumulation of specific pixel for every block and threshold average filtering. Moreover, the objective area prediction is completed by offset weighted of saliency map and guided map. Experimental results on Penn-Fudan pedestrian database and real videos show that the proposed computational model outperforms other existing models in terms of detection precision. Compared with traditional object detection method, the proposed method can save time drastically and improve detection efficiency.
出处 《北京信息科技大学学报(自然科学版)》 2014年第2期59-65,共7页 Journal of Beijing Information Science and Technology University
基金 北京信息科技大学2013年度教学改革立项资助(2012JGYB15) 北京市属高等学校人才强教深化计划资助项目(PHR201106131) 2013年度北京信息科技大学大学生科技创新项目(3ZD08)
关键词 视觉注意模型化计算 行人目标检测 显著图像 导引图像 信息融合 modeling computation of visual attention pedestrian detection saliency map guidedmap information fusion
  • 相关文献

参考文献17

  • 1Wang Li-Ming,Shi Jian-Bo,Song Gang,et al.Object detection combining recognition and segmentation[C]∥Proceedings of Eighth Asian Conference on Computer Vision.Berlin,Germany:Springer-Verlag,2007(4843):189-199
  • 2Leibe B,Seemann E,Schiele B.Pedestrian detection in crowded scenes[C]∥Preceedings of Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Soc,2005:878-885
  • 3郑南宁.认知过程的信息处理和新型人工智能系统[J].中国基础科学,2000(8):9-18. 被引量:18
  • 4Robles-De-La-Torre G,Sekuler R.Numerically estimating internal models of dynamic virtual objects[J].ACM Transactions on Applied Perception,2004,1(2):102-117
  • 5Itti L,Koch C,Niebur E.A Model of saliencybased visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259
  • 6Torralba A.Contextualpriming for object detection[J].International Journal of Computer Vision,2003,53(2):169-191
  • 7Porat M,Zeevi Y Y.The generalized gaborscheme of image representation in biological and machine vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(4):452-468
  • 8Shen Linlin,Bai Li.Mutualboostlearning for selecting gaborfeatures for face recognition[J].Pattern Recognition Letters,2006,27(15):1758-1767
  • 9张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 10Kuchi P,Gabbur P,Bhat P S,et al.Human face detection and tracking using skin color modeling and connected component operators[J].IETE Journal of Research,2002,48(3-4):289-293

二级参考文献49

  • 1庄严,战洪斌,王伟,王珂.基于加权颜色直方图和粒子滤波的彩色物体跟踪[J].控制与决策,2006,21(8):868-872. 被引量:20
  • 2Moeslund T B, Granum E. A survey of computer vision- based human motion capture. Computer Vision and Image Understanding, 2001, 81(3): 231-268.
  • 3Moeslund T B, Hilton A, Kruger V. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 2006, 104(2): 90-126.
  • 4Agarwal A, Triggs B. 3D human pose from silhouettes by relevance vector regression. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 882-888.
  • 5Grauman K, Shaknarovich G, Darrell T. Inferring 3D structure with a statistical image-based shape model. In: Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE, 2003. 641--648.
  • 6Kehl R, Gool L V. Markerless tracking of complex human motions from multiple views. Computer Vision and Image Understanding, 2006, 104(2-3): 190-209.
  • 7Lu Y F, Wang L, Hartley R, Li H D, Shen C H. Multi-view human motion capture with an improved deformation skin model. In: Proceedings of IEEE Conference on the Digital Image Computing: Techniques and Applications. Washington D. C., USA: IEEE, 2008. 420-427.
  • 8Christoudias C M, Urtasun R, Kapoor A, Darrell T. Cotraining with noisy perceptual observations. In: Proceedings of the IEEE on International Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1-10.
  • 9Urtasun R, Fleet D J, Geiger A, Popovic J, Darrell T J, Lawrence N D. Topologically-constrained latent variable models. In: Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: IEEE, 2008. 1080-1087.
  • 10Urtasun R, Darrell T J. Sparse probabilistic regression for activity-independent human pose inference. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部