期刊文献+

湿化学法制备ZnO纳米流体 被引量:1

ZnO Nanofluid Synthesized Through Wet Chemical Method
下载PDF
导出
摘要 采用湿化学法成功制备了氧化锌(ZnO)纳米流体。用X射线衍射仪(XRD)、透射电子显微镜(TEM)对ZnO纳米颗粒的成分、分散性、形貌和粒径进行了分析表征;研究了醇水比(丙二醇(PG)/水)、乙酸锌浓度、反应时间、分散剂等因素对纳米流体分散稳定性和ZnO粒径的影响。结果表明,以乙酸锌((CH3COO)2Zn·2H2O)为锌源,以氢氧化钠(NaOH)为碱源,V(丙二醇):V(水)=3:2,乙酸锌浓度为0.1mol·L^-1,反应时间0.5h,聚乙二醇2000(PEG2000)加入1%(m(PEG2000)/m(乙酸锌)=1%)时为最佳工艺条件,产物氧化锌颗粒大小在20~30nm,分散性好,解决了团聚问题,可以稳定较长时间。 ZnO nanofluids were prepared successfully through wet chemical method. The composition, dispersibility, morphology and particle size of ZnO nanoparticles were characterized by XRD and TEM. The influences of synthesis parameters, such as propylene glyeol/water(PG/water) ratio, concentration of [(CH3COO)2Zn ·2H2O], reaction time and dispersant on the particle size of ZnO and stability of the nanofluids were studied. The results show that the optimum synthesis conditions include the following aspects. [(CH3COO)2Zn· 2H2O] and NaOH are chosen to be the zinc source and the alkali source respectively, the ratio of PG to water is 3 : 2, the concentration of [(CH3COO)2Zn · 2H2O] is 0.1 mol · L ^-1, the reaction time is 0.5 h, and PEG fraction is 1 %. ZnO particles synthesized under the optimum conditions are 20-30 nm in size with high dispersibility and stability.
出处 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2014年第2期146-151,共6页 Journal of Qingdao University of Science and Technology:Natural Science Edition
基金 国家自然科学基金项目(51172117) 山东省自然科学基金项目(ZR2013MM003) 山东省优秀中青年科学家奖励基金项目(BS2013NJ025) 青岛市科技计划项目(13-1-4-148-jch)
关键词 ZnO纳米流体 湿化学法 分散性 粒径 ZnO nanofluids wet chemical method dispersibility particle size
  • 相关文献

参考文献23

  • 1Choi S U S,Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles [C]//SINGER D A, WANG H P. Developments and Applications of Non-Newtonian Flows. New York: American Society of Mechanical Engineers, 1995: 99-105.
  • 2Kole M, Dey T K. Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids[J]. Thermochimica Acta, 2012, 535: 58-65.
  • 3Xuan Y M, Li Q. Heat transfer enhancement of nanofluids[J]. lnt J Heat Fluid Flow, 2000, 21(1):58-64.
  • 4Choi S U S, Zhang Z G, Yu W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl Phys Lett, 2001, 79(14): 2252-2254.
  • 5Xie H Q, Lee H, Youn W, et al. Nanofluids containing mul- tiwalled carbon nanotubes and their enhanced thermal con-ductivities[J]. J ApplPhys, 2003, 94(8): 4967-4971.
  • 6Eastman J A, Choi U S, l.i S, et al. Enhanced thermal con- ductivity through the development of nanofluids [ J ]. Nanophase and Nanoeomposite Materials Ⅱ, 1997, 457 : 3- 11.
  • 7Lo C H, Tsung T T, Chen L C. Ni nano-magnetie fluid pre- pared by submerged arc nano synthesis system (SANSS)[J]. JSME International Journal Series B-Fluids and Thermal En- gineering, 2005, 48(4): 750-755.
  • 8Phuoc T X, Soong Y, Chyu M K. Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids [J]. Optics and Lasers in Engineering, 2007, 45: 1099- 1106.
  • 9Zhu H T, Lin Y S, Yin Y S. A novel one-step chemical method for preparation of copper nanofluids[J]. J Colloid In- terface Sci, 2004, 277(1): 100-103.
  • 10Zhu H T, Zhang C Y, Liu S Q, et al. Effects of nanoparti- cle clustering and alignment on thermal conduetivities of Fe304 aqueous nanofluids[J]. Appl Phys Lett, 2006, 89 (2) : 0231231.

二级参考文献62

共引文献73

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部