摘要
The cosmological constant A is the simplest model for explaining the dark energy which supposedly drives the observed accelerated expansion rate of the Universe. Together with the concept of cold dark matter, it satisfactorily accommo- dates a wealth of observations related to cosmology. Due to its assumed constancy throughout the Universe, A might also affect the dynamics of the planets in the so- lar system, although with extremely small effects. However, modern high-precision ephemerides provide a promising tool for constraining it. Using the supplementary advances in the perihelia provided by current INPOP10a and EPM2011 ephemerides, we obtain a new upper limit on A in the solar system when the Lense-Thirring ef- fect due to the Sun's angular momentum and the uncertainty of the Sun's quadrupole moment are properly taken into account. These two factors were mostly absent in pre- vious works dealing with A. We find that INPOP10a yields an upper limit of A = (0.26±1.45) × 10^-43 m^-2 and EPM2011 gives A = (-0.44 4±8.93) × 10^-43 m^-2. Such bounds are about 10 times less than previously estimated results.
The cosmological constant A is the simplest model for explaining the dark energy which supposedly drives the observed accelerated expansion rate of the Universe. Together with the concept of cold dark matter, it satisfactorily accommo- dates a wealth of observations related to cosmology. Due to its assumed constancy throughout the Universe, A might also affect the dynamics of the planets in the so- lar system, although with extremely small effects. However, modern high-precision ephemerides provide a promising tool for constraining it. Using the supplementary advances in the perihelia provided by current INPOP10a and EPM2011 ephemerides, we obtain a new upper limit on A in the solar system when the Lense-Thirring ef- fect due to the Sun's angular momentum and the uncertainty of the Sun's quadrupole moment are properly taken into account. These two factors were mostly absent in pre- vious works dealing with A. We find that INPOP10a yields an upper limit of A = (0.26±1.45) × 10^-43 m^-2 and EPM2011 gives A = (-0.44 4±8.93) × 10^-43 m^-2. Such bounds are about 10 times less than previously estimated results.
基金
Supported by the National Natural Science Foundation of China