期刊文献+

光学与微波数据协同反演农田区土壤水分 被引量:16

Farmland soil moisture inversion by synergizing optical and microwave remote sensing data
原文传递
导出
摘要 光学和微波协同遥感反演对于提高农田土壤水分遥感反演精度十分重要。本文采用SMEX02数据集,研究了L波段土壤发射率与地表土壤水分之间的关系,分析了地面植被覆盖对L波段土壤发射率与地表水分之关系的影响规律,推导了以L波段土壤发射率和归一化植被指数NDVI为自变量的土壤水分反演模型。研究表明:L波段土壤发射率与地表土壤水分之间的相关性随NDVI的增加而下降。验证结果表明,本文算法相对常规经验算法,土壤水分反演精度明显提高,H极化条件下,土壤水分的反演精度RMSE由0.0553提高到0.0407,相关系数R2由0.70提高到0.81;V极化条件下,反演精度RMSE由0.0452提高到0.0348,相关系数R2由0.79提高到0.86。 Improving the inversion accuracy of soil moisture by optical and passive microwave remote sensing data is an important task to develop quantitative remote sensing. Based on the Soil Moisture Experiment in 2002 (SMEX02) data set, the relationship between the surface soil moisture and the L-band soil emissivity was analyzed. We also discussed the influence of vegetation on soil microwave radiation and deduced a new soil moisture inversion algorithm that takes L-band soil emissivity and Normalized Difference Vegetation Index (NDVI) as independent variables. The SMEX02 experimental data indicates that the correlation between the soil moisture and the L-band soil emissivity decreases rapidly with the increase in NDVI. The verification result shows that the new algorithm developed in this paper has higher inversion precision than the empirical algorithm for the surface soil moisture covered by crop canopy. In relative terms, the inversion RMSE increased from 0.053 to 0.047 for H polarization and from 0.0452 to 0.0348 for V polarization. The R^2 variable increased from 0.70 to 0.81 and from 0.79 to 0.86 for H and V polarization, respectively.
出处 《遥感学报》 EI CSCD 北大核心 2014年第3期673-685,共13页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:41201336) 遥感科学国家重点实验室开放基金项目(编号:OFSLRSS201210) 中央高校基本科研业务费专项资金资助(编号:13CX02017A) 民用航天"十二五"预先研究项目(编号:D040103)~~
关键词 土壤水分 被动微波遥感 MEX02实验 协同反演 soil moisture, passive microwave remote sensing, SMEX02 experiment, synergistic inversion
  • 相关文献

参考文献1

二级参考文献19

  • 1刘伟,施建成.应用极化雷达估算农作物覆盖地区土壤水分相对变化[J].水科学进展,2005,16(4):596-601. 被引量:3
  • 2鲍艳松,刘良云,王纪华.综合利用光学、微波遥感数据反演土壤湿度研究[J].北京师范大学学报(自然科学版),2007,43(3):228-233. 被引量:23
  • 3ULABY F T,BATLIVALA P P,DOBSON M C.Microwave backscatter dependence on surface roughness,soil moisture,and soil texture:Part I Bare soil[J].IEEE Transactions on Geoscience Electronics,1978,16(4):286-295.
  • 4DOBSON M C,Ulaby F T.Active microwave soil moisture research[J].IEEE Trans Geosci Remote Sensing,1986,24(1):23-35.
  • 5DUBOIS P C,VAN Z J,ENGMAN T.Measuring soil moisture with imaging radars[J].IEEE Trans Geosci Remote Sensing,1995,33(4):915-926.
  • 6WANG J R,HSU A,SHI J C,et al.A comparison of soil moisture retrieval models using SIR-C measurements over the little Washita river watershed[J].Remote Sensing of Environment,1997,59(2):308-320.
  • 7MATTIA F,SATALINO G,DENTE L,et al.Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(4):900-912.
  • 8LOEW A,LUDWIG R,MAUSER W.Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(4):889-899.
  • 9DABROWSKA-ZIELINSKAA K,INOUEB Y,KOWALIK W,et al.Inferring the effect of plant and soil variables on C-and L-band SAR backscatter over agricultural fields,based on model analysis[J].Advances in Space Research,2007,39(1):139-148.
  • 10CLAUDIA N,MARIELLA A,FRANCESCO P.Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas[J].IEEE Trans Geosci Remote Sensing,2006,44 (4):925-935.

共引文献43

同被引文献214

引证文献16

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部