摘要
针对分簇式WSNs结构,提出基于免疫原理的簇内任务分解的WSNs轻量级入侵检测机制,建立簇内和簇头的双层相互协作的入侵检测模型。在簇内节点采用免疫遗传否定选择加速生成成熟免疫细胞集合;簇头采用粗糙集属性约简,建立入侵检测特征库,对数据包进一步入侵检测,并将新特征库更新簇内节点记忆免疫细胞集合。仿真结果证明本机制可提高检测率,节约了节点能耗,降低了误检率。
For clustered-WSNs framework ,this article proposes task decomposition intrusion detection mechanism based on immune theory and builds double -deck synergic intrusion detection mechanism of cluster -head and cluster points .The simulation process includes the following steps :using immune inheritance negative selection in cluster -points to create mature immune cells collection quickly ,using attribute reduction of Rough Set theory in cluster -head ,building intrusion detection feature library , farther detecting data package from cluster -points ,and updating memory immune cells collection of cluster - points . Simulation results prove this intrusion detection mechanism can enhance detection rate ,save points energy consumption ,and reduce false drop rate .
出处
《滁州学院学报》
2014年第2期63-67,共5页
Journal of Chuzhou University
基金
安徽省高等学校自然科学基金资助项目(KJ2012z281)
滁州学院校级自然科研项目(2011kj005B
2011kj006B)
关键词
免疫
任务分解
入侵检测
特征库
immune
task decomposition
intrusion detection
feature library