期刊文献+

一类HIV-1数学模型周期解的存在性及全局吸引性 被引量:1

Existence and Global Attractivity of Periodic Solution of a kind of HIV-1 Mathematical Model
下载PDF
导出
摘要 利用Mawhin连续定理和重合度理论,证明了一类带有饱和功能反应函数的数学模型周期解的存在性,并利用Lyapunov函数和Burbalat引理证明了周期解的全局吸引性. Existence of periodic solution of mathematical model of a kind of functions with saturated functional reaction is proved by Mawhin continuous theorem and coincidence degree theory, also global attractivity of periodic solution is proved by Lyapunov function and Burbalat lemma.
作者 赵燕春
机构地区 云南省昭通学院
出处 《哈尔滨师范大学自然科学学报》 CAS 2014年第3期58-61,共4页 Natural Science Journal of Harbin Normal University
关键词 HIV-1模型 Mawhin连续定理 Burbalat引理 HIV- 1 model Mawhin continuous theorem Burbalat lemma
  • 相关文献

参考文献8

  • 1Perelson A S,Neumann A U,Markowitz M,et al.HIV-1 dynamics in vivo:virion clearance rate,infected cell life-span,and viral generation time.Science,1996,271:1582-1586.
  • 2Nowak M,Anderson R,Boerlijst M,et al.HIV-1 evolution and disease progression.Science,1996,274:318-1010.
  • 3Nowak M,Bonhoeffer S,Shaw G,et al.Anti-viral drug treatment:dynamics of resistance in free virus and infected cell populations.Journal of Theoretical Biology,1997,184:203-217.
  • 4Korobeinikov A.Global properties of basic virus dynamics models.Bulletin of Mathematical Biology,2004,66:879-883.
  • 5Xu R.Global stability of an H1V-1 infection model with saturation infection and intracellular delay.Journal of Mathematical Analysis and Applications,2011,375(1):75-81.
  • 6Liu Zhenjie.Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates.Nonlinear Analysis:Real world Application,2013 (14):1286-1299.
  • 7Gaines R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations.Springer Berlin,1977.
  • 8闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55. 被引量:104

二级参考文献12

  • 1BELLMAN R.Stability theory of differential equations[M].New York:McGraw-Hill,1953.
  • 2LASALLE J P,LEFSCHETZ S.Stability by Lyapunov's direct method[M].New York:Academic Press,1961.
  • 3DESOER C A,M VIDYASAGAR.Feedback systems:inputoutput properties[M].New York:Academic Press,1975.
  • 4ROUCHE N,HABETS P,M LALOY.Stability theory of Lyapunov direct method[M].New York:Springer,1977.
  • 5ARTlSTEIN Z.Stabilizations with relaxed controls[J].Nonlinear Analysis,1983,7:1163-1173.
  • 6SLOTINE J J E,LI W P.Applied nonlinear control[M].NJ:Prentice Hall,1991.
  • 7KRSTIM,KANELLAKOPOULOS I,KOKOTOVIP V.Nonlinear and adaptive control design[M].New York:John Wiley and Sons,1995.
  • 8KHALIL H K.Nonlinear systems[M].NJ:Prentice Hall,2002.
  • 9TAO G.A simple alternative to the Barbalat lemma[J].IEEE Transactions on Automatic Control,1997,42(5):698.
  • 10TEEL A R.Asymptotic convergence fromstability[J].IEEE Transactions on Automatic Control,1999,44 (11):2169-2170.

共引文献103

同被引文献11

  • 1Perelson A S, Patrick W. Nelson. Mathematical Analysis of HIV-I Dynamics in Vivo[J]. SIAM Rev, 1999,41(1) : 3.
  • 2Perelson A S, et al. HIV - 1 dynamics in vivo : virion clearancerate, infected cell life - span, and viral generation time [ J ]. Science, 1996,271 (5255) : 1582 - 1586.
  • 3Kirschner D. Using mathematics to undemtand HIV immune dynamics [J]. Notices Amer Math Soc, 1996,43:191 - 202.
  • 4Perelson A, Kirschner D, De Boer R. Dynamics of HIV in- fection of CD4 + T cells Math Biosci, 1993,114 : 81 - 125.
  • 5Culshaw R V, Ruan S. A Delay Differential Equation Model of HIV Infection of T - cells. Math. Biosci. 2000,165:27 - 39.
  • 6Nelson J, Perelson A. Mathematical Anaylsis of Delay Differen- tial Equation Models of HIV- 1 Infection Math Biosci ,2002, 179( 1 ) :73 -94.
  • 7Wang L C, Li M Y. Mathematical analysis of global dynamics of a Model for HIV Infection ofT cells Math Biosci,2006,200 (1):44-57.
  • 8Hale J K, Verduyn Lunel S. Introduction to Functional Differ- ential Equations [ M ] . New York : Springer, 1993.
  • 9LaSalle J P. The Stability of Dynamical Systems[ M]. SIAM, Philadelphia, 1976.
  • 10李学志,王海霞.具有感染年龄结构的CD4^+T-细胞感染HIV病毒模型分析[J].应用数学学报,2009,32(2):207-224. 被引量:10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部