期刊文献+

两个直线型中的轨迹问题及其应用

下载PDF
导出
摘要 说明:本文引理及证明中出现的线段均为有向线段. 如图1,直线l1上有两定点A、D及动点P,直线l2上有两定点B、C及动点Q满足AP/PD=BQ/QC,并补充定义点P与D重合时,点Q与C重合. 引理1 给定实数u,若点R在PQ上使PQ/RQ=u,则R的轨迹是直线. 引理2 设AQ与BP交于点S,特别地,当点P与A重合时补充点S的位置为P、Q分别向A、B运动时点S所趋于的极限,并设AB、CD的中点分别为M、N.则点S的轨迹为平行于MN的直线. 以下证明仅说明点R、S在相应的直线上,反之由同一法即证.
出处 《中等数学》 2014年第5期16-18,共3页 High-School Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部