期刊文献+

基于高斯函数与分级学习的D-FNN算法研究

Research on D-FNN Algorithm Based on Gauss Function and Classification Learning
下载PDF
导出
摘要 D-FNN基本思想是构造一个基于扩展的RBF神经网络,它可以看成是一个TSK模糊系统,也可以看做是基于归一化的高斯RBF神经网络。该文提出的算法,学习前,模糊神经网络不需要预先确定,在学习的过程中,参数估计与结构辨识同时进行,并根据系统精度要求及模糊规则的重要性,自动地产生或者删除一条模糊规则。在学习速度、系统结构和泛化能力方面进行了仿真实验,仿真结果表明D-FNN具有更简洁的结构和优良的性能。 Dynamic fuzzy neural network (D-FNN), whose basic idea is to construct a RBF neural network based on extension, could be seen as a TSK fuzzy system, as well as a Gaussian RBF neural net work based on normalized. In the algorithm proposed, fuzzy neural network does not need to be predeter- mined before learning. During the process of learning, parameter estimation and structure identification are done simultaneously, and a fuzzy rule would be automatically generated or deleted, according to the system accuracy requirement and importance of fuzzy rules, Simulated experiments are performed in terms of learning speed, system structure and the generalization ability. The results show that D-FNN has more concise structure and more excellent performance.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期24-28,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(81272552)
关键词 动态模糊神经网络 模糊规则 高斯函数 分级学习 dynamic fuzzy neural network fuzzy rules Gaussian function classification learning
  • 相关文献

参考文献14

  • 1HONG Z. Algebraic feature extraction of image for recog- nition[J]. Patt Recog, 2009,24(2) : 211 -219.
  • 2TURK M A, PENTLAND A P. Eigenfaces for recognition [ J ]. Cognitive Neuroscience, 2010,3 ( 1 ) : 71 - 86.
  • 3CHELLAPPA R, WILSON C L, SIROHEY S. Human and machine recognition of faces: a survey[J]. Proc. IEEE, 2011,93(2) : 705 -740.
  • 4刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008.
  • 5POLYCARPOU M M, CONWAY J Y. Indirect adaptive nonlinear control of drug delivery systems [ J ]. IEEE Trans Automat Contr, 2009, 43:849 -856.
  • 6何正风,张德丰,孙亚民.高斯激活函数特征值分解修剪技术的D-FNN算法研究[J].中山大学学报(自然科学版),2013,52(1):34-39. 被引量:3
  • 7WANG L X, MENDEL J M. Fuzzy basis function, uni- versal approximation, and orthogonal least squares learn- ing[J]. IEEE Trans Neural Networks, 2012, 3:907 - 914.
  • 8任爱红.模糊随机过程函数列均方一致Henstock积分的可积性[J].中山大学学报(自然科学版),2012,51(4):41-44. 被引量:8
  • 9WU S Q, ER M J. Dynamic fuzzy neural networks: a no- vel approach to function approximation [ J ]. IEEE Trans Syst, Man, Cybern: Part B, 2011, 30:358 -36.
  • 10LU Y, SUNDARARAJAN N, SARATCHANDRAN P. A sequential learning scheme for function approximation by Using minimal radial basis function networks [ J ]. Neu- ral Computation, 2012, 19(2) :461 -478.

二级参考文献25

  • 1吴从忻,马明.模糊分析基础[M].北京:国防工业出版社,1991.
  • 2GONG Z T. On the problem of characterizing derivatives for the fuzzy-valued functions (II): almost everywhere differentiability and strong Henstock integral [ J ]. Fuzzy Sets and Systems, 2004, 145 : 381 -393.
  • 3GONG Z T, SHAO Y B. The controlled convergence the- orem for the strong Henstock integrals of fuzzy-number- valued functions [ J ]. Fuzzy Sets and Systems, 2009, 160:1528 - 1546.
  • 4FENG Y H. Mean-squares integral and differential offuzzy stochastic process [ J ]. Fuzzy Sets and Systems, 1999, 102:271 -280.
  • 5FENG Y H. Mean-squares Riemann-Stieltjes integrals of fuzzy stochastic process and theirs applications [ J ]. Fuzzy Sets and Systems, 2000, 110:27 -41.
  • 6李静.模糊随机过程的均方Henstock积分[D].中国优秀硕士学位论文全文数据库,2007.
  • 7李静,冯玉瑚.模糊随机过程的均方Henstock积分[J].东华大学学报(自然科学版),2007,33(5):590-594. 被引量:7
  • 8CHEN S,COWAN C F N,GRANT P M. Orthogonal least squares algorithm for radial basis function network[J].IEEE Transactions on Neural Networks,2010,(02):302-310.
  • 9LEONTARITIS I J,BILLINGS S A. Input-output parametric models for nonlinear systems,Part 1:Deterministic nonlinear systems[J].International Journal of Control,2009,(02):303-344.
  • 10CHELLAPPA R,WILSON C L,SIROHEY S. Human and machine recognition of faces:A survey[J].Proceedings of the IEEE,2011,(02):705-740.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部