期刊文献+

隐Markov 机制转移与随机时间水平下的多期资产配置*

Multi-period Portfolio Selection with Hidden Markov Regime Switching and Stochastic Investment Horizon
下载PDF
导出
摘要 在状态部分可观测的金融市场中,研究了投资活动终止时间不确定的多阶段均值-方差投资组合选择问题。假定市场存在有限个不可观测状态,利用离散时间时变隐Markov链描述不可观测状态的变化过程;无风险资产在各个阶段的收益率依赖于可观测市场状态;风险资产在各阶段的收益率同时依赖于可观测和不可观测市场状态。通过构造充分统计量,部分信息下的投资组合选择问题等价地转化为了完全信息下的优化问题。再利用动态规划方法和拉格朗日对偶原理,得到了最优资产组合策略和有效边界的解析表达式。 A multi-period mean-variance portfolio selection problem with stochastic investment horizon in the financial market where the market states are partially observable is considered. Suppose that the dy- namics of the unobservable market states is described by a finite-state discrete-time hidden Markov chain. Return of the risk-free asset is assumed to depend on the observable market state at that period. And re- turn of the risky asset is assumed to be dependent both on the observable and unobservable market states at that period. The portfolio selection optimization problem with partially observable information is trans- formed into the optimization problem with fully observable information by using the method of sufficient statistics. And explicit expressions of optimal portfolio strategy and efficient frontier are derived by adopting dynamic programming approach and Lagrange dual theory.
作者 张玲 曾燕
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期43-51,共9页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金重点资助项目(71231008) 国家自然科学基金青年资助项目(71201173) 教育部人文社会科学基金资助项目(12YJCZH267,13YJCZH247) 广东省哲学社会科学基金资助项目(GD12XYJ06) 广东省自然科学基金资助项目(201301011959) 广东金融学院资助项目(12XJ02-10)
关键词 部分可观测信息 不确定退出时间 隐Markov机制转移 拉格朗日方法 partially observable information uncertain exit time hidden Markov regime switching Lagrange approach
  • 相关文献

参考文献33

  • 1MARKOWITZ H. Portfolio selection[J]. Journal of Fi- nance, 1952, 7:7-91.
  • 2MERTON R C. Lifetime portfolio selection under uncer- tainty : The continuous-time case [ J ].The Review of Eco- nomics and Statistics, 1969, 51(3) : 247 -257.
  • 3LI D, NG W L. Optimal dynamic portfolio selection: multi-period mean-variance formulation [ J ]. Mathemati- cal Finance, 2000, 10:387 -406.
  • 4ZHOU X Y, LID. Continuous-time mean-variance port- folio selection: A stochastic LQ framework [ J ]. Applied Mathematics and Optimization, 2000, 42:19 -33.
  • 5LIM A E B, ZHOU X Y. Mean-variance portfolio with random parameters in a complete market [ J ]. Mathemat- ics of Operational Research, 2002, 27 : 101 - 120.
  • 6ZHU S S, LI D, WANG S Y. Risk control over bank- ruptcy in dynamic portfolio selection: a generalize mean- variance formulation [ J ]. IEEE Transactions on Auto- matic Control, 2004, 49:447 - 457.
  • 7LEIPPOLD M, TROJANI F, VANINI P. A geometric ap- proach to muhiperiod mean variance optimization of assets and liabilities [ J ]. Journal of Economic Dynamics and Control, 2004, 8:1079- 1113.
  • 8BASAK S, CHABAKAURI G. Dynamic mean-variance asset allocation [ J]. Review of Financial Studies, 2010, 23 : 2970 - 3016.
  • 9BJORK T, MURGOCI A, ZHOU X Y. Mean-variance portfolios optimization with state-dependent risk aversion [ J ]. Mathematical Finance, 2014, 24 ( 1 ) :1 - 24.
  • 10HAMILTON J D. A new approach to the economic anal- ysis of nonstationary time series and the business cycle [ J]. Econometrica, 1989, 57 : 357 - 384.

二级参考文献14

  • 1郭文旌,胡奇英.不确定终止时间的多阶段最优投资组合[J].管理科学学报,2005,8(2):13-19. 被引量:23
  • 2Li D,Ng W L.Optimal dynamic portfolio selection multi-period mean-variance formulation[J].Mathematical Finance,2000,10(3):387-406.
  • 3Li D,Chan T F,Ng N L.Safety-first dynamic portfolio selection[J].Dynamics of Continuous,Discrete and Impulsive Systems,1998,(4):585-600.
  • 4Fama E F.Multi-period continuous-investment decisions[J].American Economic Review,1970,(6):163-174.
  • 5Hakansson N H.Multi-period mean-variance analysis:Toward a general theory of portfolio choice[J].Journal of Finance,1971,26:857-884.
  • 6Elton E J,Gruber M J.On the optimality of some multi-period portfolio selection criteria[J].Journal of Business,1974,(6):231-243.
  • 7Merton R C.Optimal consumption and portfolio rules in a continuous-time mode[J].Journal of Economic Theory,1971,(3):373-413.
  • 8Merton R C.Continuous-Time Finance[M].Cambridge,MA & Oxford,UK:Blackwell,1990.
  • 9Karatzas I,Wang H.Utility maximization with discretionary stopping[J].STAM J Control and Optimization,2000,39(1):306-329.
  • 10Dellacherie C.Capacites et Processes Stochastiques[M].Berlin:Springer-Verlag,1972.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部