期刊文献+

非连通图(K_1∨(P_n^(1)∪P_n^(2)))∪P_n^(3)及(K_1∨(P_n^(1)∪P_n^(2)))∪St(n)的优美性 被引量:9

The Gracefulness of Unconnected Graphs(K_1∨(P_n^(1)∪P_n^(2)))∪P_n^(3) and (K_1∨(P_n^(1)∪P_n^(2)))∪St(n)
下载PDF
导出
摘要 给出了非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n),且对其优美性进行了研究。证明了如下结论:设n为任意正整数,则当n≥4时,非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n)均是优美图;其中,Pn是n个顶点的路,Kn是n个顶点的完全图,St(n)是n+1个顶点的星形树,G1∨G2是图G1与G2的联图。 The unconnected graphs ( K1∨ ( P(1) n∪P(2) n) ) ∪P(3)n, and ( K1∨ ( P(1)n ∪P(2)n ) )∪St(n) are presented, and their gracefulness is studied. It is proved that for positive integer n, if n ≥4 then the unconnected graphs (K1∨ (P(1)n ∪p(2)n))∪P(3)n ,and (K,∨(P(1)n ∪P(2)n))∪St(n) are graceful graphs; if n≥3 and m≥s then unconnected graph Wn∪St(m) is a graceful graph; in the meanwhile. Where Pn is n-ver- tex path, Kn is n-vertex complete graph, St(n) is (n + 1 ) -vertex star tree, graph G1∨G2 is the join graph of G1 and G2.
作者 孙彩云 王涛
机构地区 华北科技学院
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期52-56,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 北京市自然科学基金资助项目(1102015) 中央高校基本科研业务费资助项目(2011B019,3142014037) 华北科技学院重点学科资助项目(HKXJZD201402)
关键词 优美图 优美标号 非连通图 graceful graph graceful label unconnected graph
  • 相关文献

参考文献10

二级参考文献31

  • 1魏丽侠,贾治中.非连通图G_1uG_2及G_1uG_2uK_2的优美性[J].应用数学学报,2005,28(4):689-694. 被引量:26
  • 2严谦泰.图P_(2r,2m)的优美标号[J].系统科学与数学,2006,26(5):513-517. 被引量:23
  • 3蔡华,魏丽侠,吕显瑞.非连通图(P_1∨P_n)∪G_r和(P_1∨P_n)∪(P_3∨-■_r)及W_n∪St(m)的优美性[J].吉林大学学报(理学版),2007,45(4):539-543. 被引量:16
  • 4Ma Ke—jie(马克杰).Gracefu1 Graph(优美图)[M].Beijing(北京):Peking University Press(北京大学出版,1991.10.
  • 5路线 李秀芬 付彤.The k-Grace Fu11ness and Arithmetic of Grace C8 U St(111)(图C8USt(m)的k一优美性及算术性)[J].Changchun Institute of Post—Te1ecommunication Journa1(邮电学院学报),2000,18(4):17-20.
  • 6Ringel G. Problem 25 in theory of graph and its applications [C]//Proe Symposium Smoleniee. Smoleniee, 1963: 162-167.
  • 7Rosa A. On certain valuations of the vertices of a graph [C]//New York: Gordon and Breach, 1966, Theory of Graphs, Proc International, Symposium, Rome, 1966: 349-355.
  • 8Golomb S W. How to number a graph: graph theory and computing [M]. New York: Academic Press, 1972:23-37.
  • 9Acharya B D, Heged S M. Arithmetic graph[J]. J Theory, 1990,14(3) :275-299.
  • 10Gardner M. Mathematical games[J]. Scientific American, 1972,22(6) : 625-645.

共引文献59

同被引文献32

  • 1魏丽侠,贾治中.非连通图G_1uG_2及G_1uG_2uK_2的优美性[J].应用数学学报,2005,28(4):689-694. 被引量:26
  • 2严谦泰.图P_(2r,2m)的优美标号[J].系统科学与数学,2006,26(5):513-517. 被引量:23
  • 3Gallian J A. A Dynamic Survey of Graph Labeling [J]. The Electronic Journal of Combinatories, 2011, 18 1-219.
  • 4Alon N. Combinarorics, Probability and Computing M]. Cambridge: Cambridge University Press, 1999. 150-236.
  • 5ZHOU Xiangqian, YAO Bing, CHEN Xiang'en, et al. A Proof to the Odd Gracefulness of All Lobsters [J] Ars Combinatorial, 2012, 103:13- 18.
  • 6KathiesanK M. Two Classes of Graceful Graphs [J]. Ars Combinatorial, 2000, 55: 129-132.
  • 7GALLIAN J A. A Dynamic Survey of Graph Labeling [ J]. The Electronic Journal of Combinatorics, 2011 (18) : 1 - 106.
  • 8GALLIAN J A. A dynamic survey of graph labeling~J~. The Electronic Journal of Combinatorics, 2011, 18 : 1-219.
  • 9ALON N. Combinatorics, Probability and Computing[M~. Cambridge .- Cambridge University Press, 1999 = 150-236.
  • 10ZHOU X Q, YAO B, CHEN X E, et al. A proof to the odd- gracefulness of all lobsters I-J~. Ars Combinatoria 1, 2012, 103: 13-18.

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部