摘要
给出了非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n),且对其优美性进行了研究。证明了如下结论:设n为任意正整数,则当n≥4时,非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n)均是优美图;其中,Pn是n个顶点的路,Kn是n个顶点的完全图,St(n)是n+1个顶点的星形树,G1∨G2是图G1与G2的联图。
The unconnected graphs ( K1∨ ( P(1) n∪P(2) n) ) ∪P(3)n, and ( K1∨ ( P(1)n ∪P(2)n ) )∪St(n) are presented, and their gracefulness is studied. It is proved that for positive integer n, if n ≥4 then the unconnected graphs (K1∨ (P(1)n ∪p(2)n))∪P(3)n ,and (K,∨(P(1)n ∪P(2)n))∪St(n) are graceful graphs; if n≥3 and m≥s then unconnected graph Wn∪St(m) is a graceful graph; in the meanwhile. Where Pn is n-ver- tex path, Kn is n-vertex complete graph, St(n) is (n + 1 ) -vertex star tree, graph G1∨G2 is the join graph of G1 and G2.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第3期52-56,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
北京市自然科学基金资助项目(1102015)
中央高校基本科研业务费资助项目(2011B019,3142014037)
华北科技学院重点学科资助项目(HKXJZD201402)
关键词
优美图
优美标号
非连通图
graceful graph
graceful label
unconnected graph