期刊文献+

干线关键断面的到车率分布预测 被引量:1

Prediction of Arrival Flow Profile on Critical Section of Arterial
下载PDF
导出
摘要 干线协调控制需要了解交通量在干线上下游的传递和变化关系,传统的行程时间预测或到达分布预测无法提供足够的参考信息.根据干线的道路条件,界定干线上若干个关键断面;统计实际的车辆检测数据或仿真实验数据,按较小的时间间隔汇总和统计不同周期在对应间隔内的到达分布,绘制得到关键断面的到车率分布图.分析路段离散和信号控制对到车率分布的影响;以车速的累积概率分布图为基础计算转移矩阵,提出了考虑路段离散的到车率分布预测方法;分析红灯排队、绿灯放行的车流离散过程,提出了考虑信号控制的到车率预测方法.仿真案例分析表明,预测的到车率分布相对误差较小,验证了预测方法的有效性. Coordinated control on arterial need to know about the relationship of transmission and change in the upstream and downstream on arterial. The traditional prediction of travel time or arrival distribution does not provide sufficient reference. According to the road conditions, some critical sections on arterial are defined. The arrival flow profile on critical sections are drawn by collecting actual vehicle detection data or simulation experiment data and the statistics of the arrival distribution at different periods corresponding to the intervals by time step. The impact of arrival flow profile by segment dispersion and signal control is analyzed. On the basis of the speed cumulative probability distribution,transition matrix is calculated, and the prediction method of arrival flow profile considering segment dispersion is proposed. Based on an analysis of the traffic dispersion process on green and the queuing on red, the prediction method of arrival flow profile considering signal control is proposed. Simulation studies show that the relative error of the predicted arrival flow profile is smaller, which validates the prediction methods,
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期714-720,共7页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(51178343)
关键词 干线协调 到车率预测 转移矩阵 路段离散 信号控制 arterial coordination prediction of arrival flowrate transition matrix segment dispersion signal control
  • 相关文献

参考文献9

  • 1向红艳,朱顺应.小流量下短时交通量预测最佳窗口长度与时间间隔[J].武汉理工大学学报(交通科学与工程版),2006,30(4):626-628. 被引量:7
  • 2Yu B,Lam W H K,Tam M L.Bus arrival time prediction at bus stop with multiple routes[J].Transportation Research Part C:Emerging Technologies,2011,19 (6):1157.
  • 3Sadat Zadeh S M T,Anwar T,Basirat M.A survey on application of artificial intelligence for bus arrival time prediction[J].Journal of Theoretical and Applied Information Technology,2012,46(1):516.
  • 4李巧茹,魏连雨,马寿峰.基于马尔柯夫过程的城市交叉口车辆到达模型[J].长安大学学报(自然科学版),2004,24(3):53-57. 被引量:15
  • 5Zhu S,Guan J,Wang H,et al.Fuzzy gravity model of traffic distribution forecast[J].Journal of Southeast University:Natural Science Edition,2008,38 (4):727.
  • 6RobertsonD I.TRANSYT:a traffic network study tool[R].Berkshire:Road Research Laboratory,1969.
  • 7Rakha H,Farzaneh M.Issues and solutions to macroscopic traffic dispersion modeling[J].Journal of Transportation Engineering,2006,132(7):555.
  • 8Mahera M.A comparison of the use of the cell transmission and platoon dispersion models in TRANSYT 13[J].Transportation Planning and Technology,2010,34 (1):71.
  • 9Benneson J A,Pratt M P,Vandehey M A.Predicting arrival flow profiles and platoon dispersion for urban street segments[J].Journal of the Transportation Research Board,2010,2173:28.

二级参考文献8

共引文献20

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部