期刊文献+

云环境下基于资源类别聚合的算法

Research of Resource Aggregation Algorithm Based on Cloud Environment
下载PDF
导出
摘要 随着云服务类型和数量不断增长,用户很难从中选择有效的云服务。为解决云环境下海量服务的个性化推荐问题,提出了一种基于类别聚合的个性化推荐算法。首先对数据存储节点上的资源进行分类;然后计算类别之间的相关性;其次寻找资源的最近邻;最后产生推荐集。通过实验数据进行验证,提出的云环境下的协同过滤算法与传统协同过滤算法相比,推荐质量和系统性能都有很大提高。 With the growing of numbers and types of cloud services,user are faced with the issue of how to choose the best cloud service.In order to solve the problem of personalized recommendation of cloud environment,this paper presents a cloud service recommendation algorithm based on category aggregation.Firstly,the resources on the data storage node is classified;secondly,the correlation between the categories is calculated;thirdly,a search of the nearest neighbor of the resources is made;finally,the user recommendation sets are created.Validated by the experiment data,the collaborative filtering algorithm based on cloud computing in this paper,compared with the traditional collaborative filtering algorithm,there has been great improvement in the recommendation quality and system performance.
出处 《常州大学学报(自然科学版)》 CAS 2014年第2期22-25,共4页 Journal of Changzhou University:Natural Science Edition
关键词 云环境 资源分类 类别聚合 个性化推荐 cloud environment resource classification category aggregation personalized recommendation
  • 相关文献

参考文献12

二级参考文献48

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 4Yehuda Koren. Factorization Meets the Neighborhood: a Multi- faceted Collaborative Filtering Model. ACM KDD 2008.
  • 5Gediminas Adomavicius, Alexander Tuzhilin. Toward the Next Generation of Recommender Systems: A Survey of the State-of- the-Art and Possible Extensions.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING.2005,17(06):734-749.
  • 6MUKUND DESHPANDE and GEORGE KARYPIS. Item-Base Top-N Recommendation Aigorithms. ACM Transctions on Informatuon Systems.2004, 22(1):143-177.
  • 7Schafer J B, Konstan J A, Ried J. E--commerce recommendation applications[J].Data Mining and Knowledge Discovery, 2001, 5(1): 115-153.
  • 8Miha Grcar, Dunja Mladenic, Blaz Fortuna,et al. Data sparsity issues in the collaborative filtering framework [J]. Lecture Notes in Computer Science, 2006(4198): 58--76.
  • 9Herlocker L J, Konstan A J, Riedl T J. Empirical analysis of design choices in neighborhood--based collaborative filtering algorithms[J].Information Retrieval. 2002, 5(4) : 287--310.
  • 10Karypis G. Evaluation of item--based top--N recom- mendation algorithms[C] // Proceedings of the 10th in- ternational conference on information and knowledge mangement. [s. l ] : ACM, 2001 : 247--254.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部