期刊文献+

基于蚁群优化算法的无线传感器网络跨层路由协议 被引量:2

Ant Colony Optimization Algorithm For WSN Cross-Layer Routing Protocol
下载PDF
导出
摘要 针对无线传感器网络对实时性、鲁棒性及能耗平衡要求较高的特点,提出了基于蚁群算法和跨层优化的无线传感器网络路由协议ABCRO(Ant-Based&Cross-layer Routing Optimization)。算法综合考虑各层之间的信息共享机制,将链路的通信开销和链路通信情况以数据的形式转换为网络性能优良的评估参数;通过将接纳控制网络节点机制、信息素禁忌表的双向更新、节点剩余能量信息维护及跳数更新等信息加入路由选择公式,有效增强算法的可扩展性,降低通信过程中的拥塞问题。仿真实验表明ABCRO算法能够较快的寻找出一条最优的路径,从而平衡网络能耗,降低冲突率,有效提高网络整体性能,延长网络寿命。 In view of the characteristics of high demand for wireless sensor networks in real-time,robustness and energy balance,this paper puts forward a wireless sensor network routing protocol based on ant colony algorithm and optimization of and cross layer named ABCRO(Ant-Based Cross-layer Routing Optimization).Considering information sharing mechanism between the layers,the algorithm converts the communication overhead and link communication for excellent network performance evaluation parameters in the form of data,through adding the information to the routing algorithm such as admission control mechanism of network nodes.Two-way update of pheromone taboo table,information maintenance for noderesidual energy and hop count update,thus enhancing the scalability of the algorithm effectively and reducing congestion problems in the communication process.Simulation results show that ABCRO algorithm can quickly find out an optimal path,so as to balance the network energy consumption and decrease the rate of online conflict,effectively improve the overall network performance and prolong the network life.
出处 《常州大学学报(自然科学版)》 CAS 2014年第2期32-37,共6页 Journal of Changzhou University:Natural Science Edition
基金 江苏省学研前瞻性联合研究项目(BY2012097)
关键词 蚁群算法 无线传感器网络 跨层优化 能耗平衡 网络冲突 ant colony algorithm wireless sensor network cross layer optimization network conflict
  • 相关文献

参考文献10

  • 1Akyildiz I, Su W, Sankarsubramaniam Y, et al. A Survey on Sensor Networks [C]. New York: Elsevier, 2002: 102- 114.
  • 2李智明,陈佳品,李振波.基于能耗优化的AODV路由协议[J].传感器与微系统,2012,31(7):42-44. 被引量:6
  • 3闫苏莉,武晓朦,魏娜.基于改进遗传算法的油田配电网无功优化[J].电子设计工程,2009,17(1):20-22. 被引量:10
  • 4Aghaei R, Rahman M A, Gueaieb W, et al. Ant Colony - Based Reinforcement Learning Algorithm for Rooting in Wire- less Sensor Networks [C]. Warsaw: Institute of Electrical and Electronics Engineers Inc, 2007, 73 - 79.
  • 5金彦亮,张勇,薛用,郭灿,徐丽娜.基于拥塞控制的无线传感网蚁群最优化路由协议[J].上海大学学报(自然科学版),2012,18(6):551-554. 被引量:6
  • 6Mesut Gunes, Udo Sorges, Imed Bouazizi. ARA - the ant - colony based routing algorithm for MANETs [J]. Parallel Processing Workshops, 2002, 13 (3): 79- 85.
  • 7陈凤超,李融林.基于路由代价的无线传感器网络蚁群路由算法[J].华南理工大学学报(自然科学版),2011,39(5):36-43. 被引量:8
  • 8Lee J W, Ju - Jang L. Ant - colony - based scheduling algo- rithm for energy - efficient coverage of WSN [J]. IEEE Sen- sorsJournal, 2012, 12 (10): 3036-3046.
  • 9Dorigo M, Maniezzo V, Colomi A. Ant system: Optimiza- tion by a colony of cooperating agent [J]. IEEE Trans on Sys- tems, Man and Cybernetics, 1996, 26 (1): 29 - 41.
  • 10Beboit L, Bart B, Ingrid M. A survey on wireless body area networks [J]. Wireless Networks, 2011, 17 (1): 1- 18.

二级参考文献33

  • 1范宏,韦化.改进遗传算法在无功优化中的应用[J].电力系统及其自动化学报,2005,17(1):6-9. 被引量:38
  • 2王金龙,宫德河,冯涛,陈艳,王世全.大庆油田配电网节电技术研究[J].石油规划设计,2006,17(4):59-61. 被引量:3
  • 3梁华为,陈万明,李帅,梅涛,孟庆虎.基于蚁群优化的无线传感器网络能量均衡路由算法[J].模式识别与人工智能,2007,20(2):275-280. 被引量:12
  • 4Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C] //European Conference on Artificial Life,1991.Cambridge:MIT Press,1991:134-142.
  • 5Sim K M,Sun W H.Ant colony optimization for routing and load-balancing:survey and new directions[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2003,33 (5):560-572.
  • 6Di Caro G,Dorigo M.AntNet:distributed stigmergetic control for communications networks[J].Journal of Artificial Intelligence Research,1998,9 (1):317-365.
  • 7alaavathi B,Madhavi S,VijayaRagavan S.Review of ant based routing protocols for MANET[C] //IEEE International Conference on Computing,Communication and Networking,2008.St.Thomas:IEEE,2008:1-9.
  • 8Zhang Y,Kuhn L D,Fromherz M P J.Improvements on ant routing for sensor networks[C] //International Workshop on Ant Colony Optimization and Swarm Intelligence,2004.Brussels:Springer Verlag,2004:154-165.
  • 9Okdem S,Karaboga D.Routing in wireless sensor networks using ant colony optimization[C] //NASA/ESA Conference on Adaptive Hardware and Systems,2006.Is-tanbul:IEEE,2006:401-404.
  • 10Tu Z,Wang Q,Shen Y.Optimal mobile agent routing for data fusion in distributed sensor networks using improved ant colony algorithm[C] //IEEE International Conference on Instrumentation and Measurement Technology,2008.Victoria:IEEE,2008:155-159.

共引文献26

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部