期刊文献+

基于模糊聚类的果实采摘超分辨率重建方法

Super-Resolution Reconstruction of Agricultural Fruit Harvesting Based on Fuzzy Clustering
下载PDF
导出
摘要 在现有的基于稀疏表示的图像超分辨率算法的基础上,提出了一种新的基于模糊聚类的超分辨率重建算法,并使用L-曲线法确定正则化参数,有效降低了图像的边缘锯齿效应,提升了图像整体的平滑性,改善了基于稀疏约束算法的主客观重建质量。通过与线性插值法、Elad重建方法的仿真对比分析,基于模糊聚类的超分辨率重建方法可以显著提高果实自动化采摘图像的超分辨率重建效果。 Based on existing image sparse representation based super-resolution algorithm, a new super-resolution reconstruction algorithm based on fuzzy clustering and L-curve method was proposed to determine the regularization parameter, to enhance the overall smoothness of the image by effectively reducing the image jagged edge effects, effectively improve the algorithm based on subjective and objective constrained sparse reconstruction quality. By linear interpolation, Elad simulation method comparison analysis, super-resolution reconstruction method based on fuzzy clustering can significantly improve the effect of super-resolution reconstruction automated picking fruit image.
出处 《湖北农业科学》 北大核心 2014年第3期681-685,共5页 Hubei Agricultural Sciences
基金 国家科技支撑计划项目(2013BAD20B10)
关键词 超分辨率重建 稀疏表示 聚类 L-曲线 果实采摘 super-resolution reconstruction sparse representation clustering L-curve fruit harvesting
  • 相关文献

参考文献9

  • 1陈小娜,章程辉.计算机图像处理技术在农业科研中的应用[J].广西热带农业,2008(6):19-21. 被引量:8
  • 2FREEMAN W T, JONES T R, PASZTOR E C. Example-hased super-resolution [J ]. Computer Graphics and Applications, IEEE, 2002,22 (2) : 56-65.
  • 3YANG J, WRlGHT J, HUANG T, et al. Image super-resolu- tion via sparse representation [J]. Image Processing, IEEE Transactions on, 2010,19( 11 ) :2861-2873.
  • 4ELAD M, AHARON M. hnage denoising via sparse and re- dundant representations over learned dictionaries[J]. Image Pro- cessing, IEEE Transactions on,2006, 15(12):3736-3745.
  • 5AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: Design of dictionaries for sparse representation [J]. Proceedings of SPARS,2005 (5) :9-12.
  • 6DONOHO D L. Compressed sensing [J]. Information Theory, IEEE Transactions on,2006,52(4) : 1289-1306.
  • 7DONG W, ZHANG L, SHI G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adap- tive regularization[J]. Image Processing, IEEE Transactions on, 2011,20(7) : 1838-1857.
  • 8周光华,李岳峰,孟群.模糊聚类分析在医学图像处理中的应用[J].中国卫生信息管理杂志,2011,8(4):69-73. 被引量:5
  • 9HANSEN P C, O'LEARY D P. The use of the L-curve in the regularization of discrete ill-posed problems [J]. SIAM Journal on Scientific Computing, 1993,14(6) : 1487-1503.

二级参考文献46

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部