期刊文献+

基于ReliefF和聚类的特征选择方法及其在无线电信号识别中的应用 被引量:7

Application of Feature Selection Approach Based on ReliefF and Clustering in Radio Signal Recognition
下载PDF
导出
摘要 无线电信号识别在无线电监测中占有重要地位,为了提高信号识别率,针对C波段信号特征数据的特点,提出一种基于ReliefF和聚类的特征选择方法.该算法首先用ReliefF算法去除与分类不相关的特征,再对余下的特征根据相关度强弱进行特征聚类,最后根据特征权重大小和相关度强弱删除冗余特征,选出代表性特征.实验结果表明,该算法有效地减少了数据维数,并且提高了信号识别率. Radio signal recognition is very important in the radio monitoring.According to the characteristics of C band signal feature data,a new feature selection approach based on ReliefF and clustering is presented in order to improve the signal recognition rate in this paper.Firstly this algorithm eliminates those features irrelevant to class making use of ReliefF algorithm,then clusters the rest features based on similarity measure,finally deletes redundant features and selects representative characteristics based on the weights and the similarity.Experiments show that the algorithm can effectively reduce the data dimension and improve the signal recognition rate.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2014年第3期347-350,共4页 Journal of Henan University:Natural Science
基金 国家自然科学基金(61175055) 四川省科技支撑计划(2011FZ0051) 工业和信息化部无线电管理局资助项目([2011]146) 中国通信学会资助项目([2011]051)
关键词 特征选择 特征聚类 C波段信号识别 模糊C-均值聚类 feature selection feature clustering C band signal recognition fuzzy c-means clustering
  • 相关文献

参考文献4

二级参考文献24

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2Yu L,Liu H.Efficient feature selection via analysis of relevance and redundancy[J].Journal of Machine Learning Research,2004:1205-1224.
  • 3Zhang D,Chen S,Zhou Z.Constraint score:A new filter method for feature selection with pair-wise constraints[J].Pattern Recognition,2008,41:1440-1451.
  • 4Kohavi G,John H.Wrappers for feature subset selection[J].Artificial Intelligence,1997:273-324.
  • 5Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research,2003:1157-1182.
  • 6Swiniarski W,Skovaon A.Rough set methods in feature selection and recognition[J].Pattern Recognition Letters,2003:833-849.
  • 7Last M,Kandel A,Maimon O.Information-theoretic algorithm for feature selection[J].Pattern Recognition Letters,2001:799-811.
  • 8Dash M,Liu H,Yao J.Dimensionality reduction of unsupervised data[C] //Proc 9th IEEE Int'l Conf Tools with Artificial Intelligence,1997:532-539.
  • 9Mitra P,Murthy C A,Pal S K.Unsupervised feature selection using feature similarity[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002:301-312.
  • 10Covoes T F,Hruschka E R.A cluster-based feature selection approach[C] //LNCS 5572:HAIS2009,2009:69-176.

共引文献15

同被引文献52

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部