期刊文献+

基于q-高斯分布的投资组合实证分析 被引量:2

Empirical Analysis on Portfolio Model Based on q-Gaussian
下载PDF
导出
摘要 投资组合是一个复杂系统问题,选择合适的q-分布及其密度表达形式是应用中的一个重要问题。首先从含有噪声的线性随机微分方程中推导出q-高斯分布概率密度函数,其表达形式简单,参数对分布的影响非常直观;接着将q-高斯分布应用于投资组合理论的均值-方差模型和均值-VaR模型;最后结合沪市股票数据进行实证分析,结果表明两种模型在q-高斯分布假设下的实际收益均大于其在高斯分布假设下的实际收益。 q-Gaussian distribution has been widely used in interdisciplinary sciences and complex systems.In this paper,we infer density function of q-Gaussian distribution from linear stochastic differential equation with both multiplicative and additive noises.This density function form is easily-used and the influence of parameters on the distribution is more intuitive.By using q-Gaussian distribution in mean-variance and mean-VaR portfolio models with data from Shanghai Stock,a better result can be obtained under the assumption that stock returns obey q-Gaussian distribution than Gaussian distribution.
出处 《统计与信息论坛》 CSSCI 2014年第5期20-25,共6页 Journal of Statistics and Information
基金 国家自然科学基金项目<上市公司财务预警正则化和贝叶斯变量选择技术研究>(71361009) 教育部人文社会科学研究规划基金项目<稀疏财务预警模型及其变量选择技术研究>(13YJC630192) 教育部人文社会科学研究规划项目<基于折线模糊神经网络的证券投资组合方法研究>(12YJCZH078) 江西省研究生创新基金项目<高维数据聚类中有限混合模型及其算法研究>(YC2013-S172)
关键词 q-高斯分布 投资组合 均值-方差模型 均值-VAR模型 有效前沿 q-Gaussian distribution portfolio mean-variance mean-VaR efficient frontier
  • 相关文献

参考文献12

  • 1Vignat C,Plastino A.Why is the Detection of q-Gaussian Behavior Such a Common Occurrence[J].Physica A:Statistical Mechanics and its Applications,2009,388(5).
  • 2Ghoshdastidar D,Dukkipati A,Bhatnagar S.q-Gaussian Based Smoothed Functional Algorithms for Stochastic Optimization[C].Cambridge:IEEE International Symposium on Information Theory Proceedings,2012.
  • 3Sato A,Takayasu H,Sawada Y.Power Law Fluctuation Generator Based on Analog Electrical Circuit[J].Fractals,2000,8(3).
  • 4荣喜民,武丹丹,张奎廷.基于均值-VaR的投资组合最优化[J].数理统计与管理,2005,24(5):96-103. 被引量:23
  • 5Fabozzi F J,Markowitz H M,Kolm P N,et al.Mean-Variance Model for Portfolio Selection[M].New York:John Wiley&Sons,Inc.,2012.
  • 6Baixauli-Soler J S,Alfaro-Cid E,Fernandez-Blanco M.Mean-VaR Portfolio Selection Under Real Constraints[J].Computational Economics,2011,37(2).
  • 7Kaulakys B,Ruseckas J,Gontis V,et al.Nonlinear Stochastic Models of Noise and Power-law Distributions[J].Physica A:Statistical Mechanics and Its Applications,2006,365(1).
  • 8Timmermann A.Moments of Markov Switching Models[J].Journal of Econometrics,2000,96(1).
  • 9Beck C,Cohen E G D.Superstatistics[J].Physica A:Statistical Mechanics and Its Applications,2003(322).
  • 10孟勇.Markowitz模型与Black-Litterman模型比较研究——投资人情绪对资产组合的影响[J].统计与信息论坛,2013,28(8):31-37. 被引量:4

二级参考文献18

  • 1Alexandre. G, and A. Baptista. Economic implications of using mean-VaR model for portfolio selection:a comparison with mean-variance analysis [ J ]. Journal of Economic Dynamic and Control 2002.26,1159 - 1193.
  • 2Enrico De Giorgi, A note on portfolio selection under various risk measures. Working Paper. University of ZUrich. 2002.8.19.
  • 3Giorgio Szegfi. Measures of risk. Journal of banking & finance. 2002.26,1253 - 1272.
  • 4Alexandre. G, and A. Baptism, CvaR as a measure of risk:implications for portfolio selection. Working Paper. University of Minnesota & University of Arizona. 2003.2.22.
  • 5William F Sharpe. Portfolio theory and capital markets[ M]. McGraw-Hill. Inc, USA, 1970.
  • 6Markowitz, Harry. Portfolio Selection[J]. Journal of Finance, 1952(7).
  • 7Eugene F. Fama, Random Walks in Stock Market Prices[J]. Financial Analysts Journal, 1965 (5).
  • 8Michaud R. The Markowitz Optimization Enigma.- Is Optimized Optimal? [J]. Financial Analysts Journal, 1989 (1).
  • 9Black, Litterman. Global Portfolio Optimization[J]. Journal of Fixed Income, 1991(5).
  • 10Jobson J D,Korkie B. Performance Hypothesis Testing with the Sharpe and Treynor Measures[J-]. Journal of Finance, 1981(4).

共引文献25

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部