期刊文献+

掺杂石墨烯气体扩散电极电芬顿氧化降解三氯生废水模拟 被引量:6

Electro-fenton degradation of simulation wastewater of triclosan by use of graphene doped gas-diffusion electrode
下载PDF
导出
摘要 为了解决水中个人护理品难以处理的问题,以具有优良氧还原催化活性的掺杂石墨烯气体扩散电极(rGO/C-PTFE GDE)为阴极,构建了均相电芬顿氧化体系,探讨了石墨烯掺杂量、电流密度、电解质浓度等因素对rGO/C-PTFE GDE原位生成H2O2的产率和电流效率的影响,确定了电生成H2O2的最优化条件,即石墨烯与片状石墨的质量比为1∶8,电流强度为2.0 mA/cm2,电解液浓度为0.05mol/L。该条件下经180 min电解H2O2积累浓度可达到187.1mg/L。以rGO/C-PTFE GDE为阴极构建了均相电芬顿氧化体系,并应用于含三氯生模拟废水的氧化降解,研究了电解液pH值和外加Fe2+浓度对三氯生去除效果的影响。结果表明:对于初始浓度为45 mg/L的三氯生,在pH值为3.0,外加Fe2+浓度0.75 mmol/L的条件下,经过180 min均相电芬顿氧化的处理,73.9%的三氯生可被氧化降解。 In order to resolve the problem of personal care product being difficult to be dealt with,the paper constructed an undivided electro-Fenton system with the reduced graphene oxide( rGO)-doped gas diffusion electrode( rGO / C-PTFE GDE) as cathode to achieve the electrocatalytic oxidation degradation of personal care products( PPCPs)-triclosan. The influence of additive amount of graphene,current densities and electrolyte concentration on electrochemical generation of H2O2and current efficiency were investigated in detail. The most optimum conditions of producing H2O2are that the mass ratio of graphene and graphite equals 1: 8,current density is 2. 0 mA / cm2,electrolyte concentration is 0.05 mol/L. The accumulation concentration of H2O2electrode after 180 minutes reaches 187. 1 mg / L under which conditions. The homogeneous electro-Fenton oxidation system was constructed to degrade triclosan simulation wastewater. The influences of electrolyte pH and Fe2 +concentration on the removal rate of triclosan were investigated. The triclosan of 73. 9% of can be removed under the optimal conditions of pH 3. 0 and 0. 75 mmol / L Fe2 +electrolyzed after 180 minutes.
出处 《水资源与水工程学报》 2014年第2期49-53,共5页 Journal of Water Resources and Water Engineering
基金 国家自然科学基金项目(21177017) 中国博士后科学基金项目(2011M500560) 中央高校基本科研业务费专项(DUT13LK50)
关键词 石墨烯 气体扩散电极 电-Fenton体系 H2O2 三氯生废水 graphene gas diffusion cathode electro-Fenton system H2O2 triclosan
  • 相关文献

参考文献10

  • 1Meshko V,Markovska L,Mincheva M,et al.Adsorption of basic dyes on granular acivated carbon and natural zeolite[J].Water Research,2001,35(14):3357-3366.
  • 2Martinez-Huitle C A,and Brillas E.Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:A general review[J].Applied Catalysis B:Environmental,2009,87(3):105-145.
  • 3Rosales E,Pazos M,and Sanromán M A.Advances in the electro-fenton process for remediation of recalcitrant organic compounds[J].Chemical Engineering Technology 2012,35(4):609-617.
  • 4Brillas E,Sire's I,and Oturan M A.Electro-fenton process and related electrochemical technologies based on fenton's reaction chemistry[J].Chemistry Reviews,2009,109(12):6570-6631.
  • 5Geim A K.Graphene:status and prospects[J].Science,2009,324:1530-1534.
  • 6Geim A K,Novoselov K S,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
  • 7Hummers Jr W S,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339.
  • 8Kovtyukhova N I,Ollivier P J,Martin B R,et al.Layerby-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J].Chemistry of Materials,1999,11(3):771-778.
  • 9Flox C,Ammar S,Arias C,et al.Electro-fenton and photoelectro-fenton degradation of indigo carmine in acidic aqueous medium[J].Applied Catalysis B:Environmental,2006,67(1-2):93-104.
  • 10Brillas E,Mur E,Sauleda R,et al.Anline mineralization by AOP's:anodie oxidation,photocatalysis,eleetr-Fenton and photo-Fenton processes[J].Applied Catalysis B:Environmental,1998,16(l):31-42.

同被引文献49

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部