摘要
研究了处在中心对称的一维有限深方势阱中的运动粒子,通过求解定态薛定谔方程引入了一个在势阱内部连续的函数,进而利用连续性函数的零点定理对势阱中粒子存在一个或多个束缚态的条件进行了深入分析.结果表明,存在束缚态的数目与一维有限深方势阱的宽度、深度和粒子质量有关,在粒子质量一定的情况下,存在更多的束缚态要求更深的势阱宽度、深度.
For a moving particle in an semi- infinite potential well of one dimension,a continuous and monotonous function is introduced by solving stationary Schr? dinger equation,then Existence conditions of one even more Particle's bound state are analyzed by means of the zero- point theorem of continuous function. The results show the number of bound state is connected with the width and depth of one – dimensional Infinite potential well. For a certain quality of particle,more bound states need much deeper and wider potential well.
出处
《菏泽学院学报》
2014年第2期36-38,共3页
Journal of Heze University
基金
菏泽学院自然科学基金资助项目(XY12KJ01)
关键词
一维有限深方势阱
束缚态
存在条件
定态薛定谔方程
one-dimensional finite deep potential trap
bound state
existence conditions
stationary Schrodinger equation