期刊文献+

两食饵-两捕食者捕食-食饵系统的持久性与全局渐近稳定性

Permanence and Globally Asymptotic Stability of Prey-Predator System with Two-prey Two-Predator
下载PDF
导出
摘要 讨论了一类两食饵-两捕食者捕食-食饵系统;通过微分方程比较原理和构造Liapunov函数的方法,得到了系统的一致持久性和全局渐近稳定性的充分条件. In this paper,we consider a class of prey-predator system with two-prey two-predator. By using the comparative principle of the differential equation and Lyapunov function,sufficient conditions for the consistency permanence and the globally asymptotic stability of the system are derived.
出处 《重庆工商大学学报(自然科学版)》 2014年第6期1-5,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 安徽省自然科学基金(1408085MA02)
关键词 捕食-食饵系统 LYAPUNOV函数 持久性 全局渐近稳定性 prey-predator system Lyapunov function permanence globally asymptotic stability
  • 相关文献

参考文献10

  • 1ZHANG Y J,LIU B,CHEN L S. Extinction and Permanence of a Two-prey One-predator System with Impulsive Effect [ J], IMA Journal of Mathematical Medicine and Biology, 2003 ( 20) : 309-325.
  • 2LIU B, TENG Z D, CHEN L S. Analysis of a Prey-predator Model with Holling K Functional Response Concerning Impulsive Control Strategy[ J]. Journal of Computational and Applied Mathematics,2006,193(1) :347-362.
  • 3ZHANG S W,CHEN L S. A Study of Prey-predator Models with The Beddington-DeAnglis Functional Response and Impulsive Effect [J]. Chaos,Solitons&Fractals,2006,27(1) :237-248.
  • 4BEAK H K. Qualitative Analysis of Beddington-DeAnglis Type Impulsive Prey-predator Models [ J]. Nonlinear Analysis:RWA, 2010,11(3) :1312-1322.
  • 5SONG X Y, LI Y F. Dynamic Complexities of a Holling II Two-prey One-predatorsystem with Impulsive Effect [ J] . Chaos, Solitons & Fractals,2007,33(2) :463-47.
  • 6倪春青,胡志兴.一类具有常数收获率的具有功能性反应捕食模型的定性分析[J].重庆工商大学学报(自然科学版),2010,27(3):235-239. 被引量:10
  • 7GEORGESCU P,MOROSANU G. Impulsive Perturbations of a Three-trophic Prey-dependent Food Chain System[ J]. Mathematical and Computer Modelling, 2008,48 ( 7-8 ) : 975-997.
  • 8宋新宇,郭红建,师向云.脉冲微分方程理论及其应用[M].北京:科学出版社,2011.
  • 9SHEN C. Permanence and Global Attractivity of The Food-chin System with Ho-lling IV Type Functional Response [ J]. Appl Math Comput,2007(194) :179-785.
  • 10BARBALAT I. Systems D,equations Differentielle D,oscillations Nonlineai-res [J]. Rev Roumaine Math Pures Appl, 1975(4) :267-270.

二级参考文献8

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部