期刊文献+

“强光一号”单排平面型铝丝阵Z箍缩实验研究 被引量:2

Experimental researches on single aluminum planar-wire-array Z-pinches on Qiangguang generator
下载PDF
导出
摘要 利用“强光一号”装置开展了排宽度6~24mm、丝根数10~34、不同参数的单排平面型铝丝阵Z箍缩实验研究,重点研究了不同负载参数下平面型丝阵Z箍缩内爆、辐射特性随负载参数的变化规律。结果表明:平面型丝阵负载内爆过程存在先驱等离子体柱、拖尾质量等,并伴随着R—T不稳定性;在滞止后期等离子体箍缩柱受扭曲不稳定性影响明显;不同参数负载聚爆时间取决于线质量与排宽度平方的乘积值;以辐射能衡量的最优化值应位于200~400μg·cm之间,在相同值下丝间距应选择在1mm以下为宜。实验获得的平面型铝丝阵最大x射线辐射能量22kJ,峰值功率630GW,最大K层辐射能量3.9kJ,K层辐射功率158GW。 Planar wire arrays Z pinches were conducted on Qiangguang generator (1.5 MA, 100 ns). The loads in the ex- periments varied their row widths (6-24 ram) and wire numbers (10-34). The scaling of the implosion times, radiation yields and power with the parameter of the loads, such as array masses, inter-wire gaps, and array widths were investigated. The images of the soft X-ray camera show that the trailing mass, precursor column, and R-T instability exist during the implosion phase, and kink instability will occur and rapidlf develop after stagnation. The experimental results show that the product of the line mass and the square row width is a critical factor. This factor can affect the implosion times and the X-ray products of wire arrays with different parameters, the optimum range is 200~400 /μg . cm for Qiangguang generator. The results also imply that the inter- wire gap should be smaller than 1 mm. The maximum X-ray total energy is 22 kJ with the peak power 630 GW while the maxi- mum K-shell product is 3.9 kJ with 158 GW.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第5期255-260,共6页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(51237006)
关键词 平面型丝阵 内爆 辐射特性 Z箍缩 planar wire array implosion radiation Z pinch
  • 相关文献

参考文献16

  • 1Mosher D. BollerJR. Hinshelwood D D. et al. Plasma evolution in liner arrays of tungsten wires during prepulse[J]. Bull Am Phys Soc. 1998.43: 1642.
  • 2Bland S N. Lebedev S V. ChittendenJ P, et al. Use of linear wire array Z pinches to examine plasma dynamics in high magnetic fields[J]. Physics of PLasmas, 2004. 11(11):4911-4921.
  • 3Kantsyrev V L. Rudakov Ll' Safronova A S. et al. Double planar' wire array as a compact plasma radiation source[J]. Physics o f Plas?mas. 2008. 15: 030704.
  • 4Safronova A S. Esaulov A A. Kantsyrev V L. et al. Searching for efficient X-ray radiatiors for wire array Z-pinch plasmas using mid-atomic?number single planar wire arrays on Zebra at UNR[J]. High Energy Density Physics. 2011, 7 : 252-258.
  • 5Jones B. Cuneo M E. Ampleford DJ. et al. Planar wire-array Z-pinch implosion dynamics and X-ray scaling at multiple-MA drive currents for a compact multisource hohlraum configuration[J]. Physical Review Leuers , 2010. 104: 125001.
  • 6Kantsyrev V L. Rodakov L I. Safronova A S. et al. Planar wire array as powerful radiation source[J]. IEEE Trans 011 Plasma Science. 2006. 34(5): 2295-2302.
  • 7Jones B. Cuneo M E, Ampleford DJ, et al. Planar wire array dynamics and radiation scaling at multi-MA levels on the Saturn pulsed power generator[C]117th International Conference on Dense Z-Pinches. 2008: 109.
  • 8Shishlov A V. Chaikovsky S A. Fedunin A V. et al. Effect of the initial load parameters on the K-shell output of Al planar wire array oper?ating in the microsecond implosion regime[CJl17th International Conference on Dense Z-Pinches. 2008: 137.
  • 9Kantsyrev V L. Sa fro nova A S. Fedin D A. et al. Radiation properities and implosion dynamics of planar and cylindrical wire arrays. asym?metric and symmetric. uniform and combined X-pinches on the UNRI-MA Zebra generator[J]. IEEE Trans on Plasma Science. 2006. 34 (2): 194-212.
  • 10Ivanov V V. Stonikov V I, Haboub A. et al. Investigation of ablation and implosion dynamics in linear wire array[J]. Physics of Plas?mas. 2007. 14: 032703.

二级参考文献10

  • 1Sanford T W L, Nash T J, Mock R C, et al. Time-dependent electron temperature diagnostics for high-power aluminum Z pinch plasmas[J]. RevSci Instrurn, 1997, 68(1):852-857.
  • 2Spitzer I. The physics of full ionized gases[M]. New York: Wiley Interscience, 1962:136.
  • 3Hutchinson I H. Principles of plasma diagnosties[M]. UK; Cambridge University Press, 2002:201.
  • 4Griem H R. Plasma spectroscopy[M]. New York: McGraw-Hill Book Company, 1964:114.
  • 5Chung H K, Chen M H, Morgan W L, et al. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements[J]. High Energy Density Physics, 2005, 1:3-12.
  • 6Hall G N, Pikuz S A, Shelkovenko T A, et al. Structure of stagnated plasma in aluminum wire array Z pinches[J]. Phys Plasmas, 2006, 13: 082701.
  • 7Henke B L, Lee P, Tanaka T J ,et al. Low-energy X ray interaction coefficients: photoabsorption, scattering, and reflection: E= 100-2000 eV Z=1 94[J]. At Data Nucl Data Tables, 1982, 27(1) :1- 144.
  • 8Knauer J P, Marshall F J, Yaakobi B, et al. Response model for Kodak Biomax-MS film to X rays[J]. Rev Sci Instrum, 2006, 77: 10F331.
  • 9甘新式,杨家敏,易荣清,张继彦,赵屹东,赵阳,崔明启,邓爱红.邻苯二钾酸氢铊晶体积分衍射效率的标定[J].强激光与粒子束,2007,19(11):1827-1831. 被引量:10
  • 10蒙世坚,李正宏,秦义,叶繁,徐荣昆.X射线连续谱法诊断铝丝阵Z箍缩等离子体温度[J].物理学报,2011,60(4):418-421. 被引量:5

共引文献1

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部