期刊文献+

灰关联分析与BP人工神经网络在土石坝震害群体预测中的运用

Forecasting Seismic Damage to Buildings based on Grey Relation and Artificial Neural Network Model
下载PDF
导出
摘要 利用灰关联识别方法分析各震害影响因子对土石坝抗震性能的影响程度,并筛选出关联程度大的震害影响因子。利用BP人工神经网络非线性模型对震害实例样本进行了训练。结果表明:利用灰关联分析,可得出各因子对土石坝抗震性能影响程度的大小排序,供实际的工程抗震设计参考,基于BP人工神经网络模型的土石坝的震害预测结果与震害实例的实际情况比较吻合。 The paper analyzes the influence factors that affect the earthquake-resistance performance of the earth dam and selects the damage factor with the large degree of association by grey relational analysis. And the actual damage samples are trained by BP artificial neural network model. The research shows that effect to the earthquake-resistance performance of these factors can be obtained by grey relational analysis and it can benefit the actual engineering design of earthquake-resistance of earth dam.It also can be found the prediction results are similar to the actual seismic damage of earth dam bv the grey relational analysis and BP neural network mode.
出处 《华南地震》 2014年第B04期90-94,共5页 South China Journal of Seismology
关键词 灰关联分析 BP人工神经网络 土石坝 震害预测 Grey relational analysis BP artificial neural network Earth dam Seismic damage prediction
  • 相关文献

参考文献2

二级参考文献10

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部