期刊文献+

三阶p-Laplacian中立型泛函微分方程的周期解 被引量:1

Periodic Solutions for Three-Order p-Laplacian Neutral Functional Differential Equation
下载PDF
导出
摘要 利用Mawhin重合度理论,研究一类三阶p-Laplacian中立型泛函微分方程[φp(x(t)-∑n j=1cjx(t-r))″]′+f(x(t))x′(t)+α(t)g(x(t))+∑n j=1βj(t)g(x(t-γj(t)))=p(t)周期解的存在性,得到了这类方程至少存在一个T周期解的充分条件. Using Mawhin's coincidence degree theorem,the authors studied the existence of periodic solutions for three-order p-Laplacian neutral functional differential equation[φpx(t)-∑n j=1cjx(t-rj)) ″]′+f(x(t))x′(t)+α(t)g(x(t))+∑n j=1βj(t)g(x(t-γj(t)))=p(t)suggesting that there exists one sufficient condition,at least,for the existence of T-periodic solutions.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第3期421-428,共8页 Journal of Jilin University:Science Edition
基金 高等学校博士点基金(批准号:20113401110001) 安徽省自然科学基金(批准号:1308085MA01) 安徽大学研究生学术创新研究项目(批准号:10117700020)
关键词 周期解 Mawhin重合度 三阶 P-LAPLACIAN方程 periodic solution Mawhin's coincidence degree three-order p-Laplacian equation
  • 相关文献

参考文献9

  • 1WANG Lianglong, WANG Zhichcng, ZOU Xingfu. Periodic Solutions of Neutral Functional Differential Equations [J]. J London MathSoc, 2002 , 65(2.) :439-452.
  • 2WANG Lianglong, WANG Zhichcng. Controllability of Abstract Neutral Functional Differential Systems with Infinite Delay [J]. Dynamics of Continuous, Discrete and Impulsive Systems, Series B:Applications & Algorithms, 2002 , 9(2.) :59-70.
  • 3LU Shiping, GUI Zhanjic, GE Wcigao. Periodic Solutions to a Sccond Order Nonlinear Neutral Functional Differential Equation in the Critical Case [J]. Nonlinear Analysis:Theory, Methods & Applications, 2006, 6,1(1 ) : 1587-1607.
  • 4LU Shiping, GE Wcigao. Periodic Solutions of Neutral Differential Equation with Multiple Deviating Arguments [J].Applied Mathematics and Computation, 2004,156(3.) :705-717.
  • 5Zhu Yanling,Lu Shiping.PERIODIC SOLUTION FOR p-LAPLACIAN DIFFERENTIAL EQUATION WITH A DEVIATING ARGUMENT[J].Annals of Differential Equations,2007,23(1):119-126. 被引量:5
  • 6LU Shiping. Existence of Periodic Solution for a p-Laplician Neutral Functional Differential Equations [J]. Nonlinear Analysis:Theory, Methods & Applications, 2009 , 70(1) :23 1-243.
  • 7刘丙镯,刘文斌.四阶p-Laplacian中立型泛函微分方程周期解的存在性[J].吉林大学学报(理学版),2011,49(3):430-436. 被引量:2
  • 8沈钦锐,周宗福.一类具偏差变元的三阶p-Laplacian方程周期解的存在性[J].吉林大学学报(理学版),2012,50(1):27-34. 被引量:3
  • 9Gincs R E , Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [M]. Heidelberg:Springcr-Vcrlag, 1977.

二级参考文献9

共引文献5

同被引文献9

  • 1Zhu Yanling,Lu Shiping.PERIODIC SOLUTION FOR p-LAPLACIAN DIFFERENTIAL EQUATION WITH A DEVIATING ARGUMENT[J].Annals of Differential Equations,2007,23(1):119-126. 被引量:5
  • 2WANG Lianglong, WANG Zhicheng, ZOU Xingfu. Periodic Solutions Of Neutral Functional Differential Equations [J]. J London Math Soc, 2002, 65(2) : 439-452.
  • 3WANG Lianglong, WANG Zhicheng. Controllability of Abstract Neutral Functional Differential Systems with Infinite Delay [J]. Dynamics of Continuous, Discrete and Impulsive Systems: Series B (Applications Algorithms), 2002, 9(1): 59-70.
  • 4LU Shiping, GUI Zhanjie, GE Weigao. Periodic Solutions to a Second Order Nonlinear Neutral Functional Differential Equation in the Critical Case [J]. Nonlinear Analysis: Theory, Methods & Applications, 2006, 64(7) : 1587-1607.
  • 5LU Shiping, GE Weigao. Periodic Solutions of Neutral Differential Equation with Multiple Deviating Arguments [J]. Applied Mathematics and Computation, 2004, 156(3): 705-717.
  • 6LU Shiping. Existence of Periodic Solutions for a p-Laplician Neutral Functional Differential Equation [J]. Nonlinear Analysis (Theory, Methods & Applications), 2009, 70(1) : 231-243.
  • 7Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer-Verlag, 1977.
  • 8刘丙镯,刘文斌.四阶p-Laplacian中立型泛函微分方程周期解的存在性[J].吉林大学学报(理学版),2011,49(3):430-436. 被引量:2
  • 9沈钦锐,周宗福.一类具偏差变元的三阶p-Laplacian方程周期解的存在性[J].吉林大学学报(理学版),2012,50(1):27-34. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部