期刊文献+

一类不定复空间型中Lagrange子流形的Chen型不等式 被引量:1

Inequalities of Chen Type for Lagrangian Submanifolds of a Class of Indefinite Complex Space Form
下载PDF
导出
摘要 利用Riemann不变量和Riemann流形上的最优化方法得到一类不定复空间型中Lagrange子流形的Chen型不等式,并证明了等号成立时子流形一定为全测地的. We obtained an inequality of Chen type for Lagrangian submanifolds of a class of indefinite complex space form using the Riemannian invariant and the optimization method on the Riemannian manifolds.In particular,we also showed that a Lagrangian submanifold of the indefinite complex space form attaining equality in the inequality must be totally geodesic.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第3期439-444,共6页 Journal of Jilin University:Science Edition
基金 安徽省高校优秀青年人才基金(批准号:2011SQRL021ZD)
关键词 不定复空间型 Lagrange子流形 Chen型不等式 全测地 indefinite complex space form Lagrangian submanifolds inequality of Chen type totally geodesic
  • 相关文献

参考文献14

  • 1CHEN Bangycn. Some Pinching and Classification Theorems for Minimal Submanifolds [J]. Arch Math, 1993 , 60: 568-578.
  • 2Chcrn S S. Minimal Submanifolds in a Ricmannian Manifold [M]. Lawrcncc:University of Kansas Press, i968.
  • 3Chen B Y, Dillcn F, Vcrstraclcn L, ct al. Totally Real Submanifolds of CPn Satisfying a Basic Equality [J].Arch Math, 1994, 63(6) :553-564.
  • 4Dc fever F, Mihai I, Vcrstraclcn L. B.-Y. Chen’s Inequality for Submanifolds of Sasakian Space Forms [J]. Boll Unionc Mat Ital, 2001 , 4 B(2) :521-529.
  • 5Gulbahar M, Kilic E, Kclcs S. Chcn-Likc Inequalities on Lightlikc Hypcrsurfaccs of a Lorcntzian Manifold [J]. Journal of Inequalities and Applications, 2013,20130): 266.
  • 6Oprca T. Optimizations Methods on Ricmannian Submanifolds [J]. An Univ Buc, 2005 , 1 :1 27-1 36.
  • 7Oprca T. Chen’s Inequality in Lagrangian Case [J]. Colloq Math, 2007 , 108 :1 63-1 69.
  • 8Bolton J, Montcalcgrc C R, Vranckcn L. Characterizing Warped Product Lagrangian Immersions in Complex Projcctivc Space [J]. Proc Edinb Math Soc, 2009,52(2) :273-286.
  • 9Tripathi M M. Improved Chcn-Ricci Inequality for Curvature-Like Tensors and Its Applications [J]. Differential Geometry and Its Applications, 2011, 29(5): 685-698.
  • 10CHEN Bangycn. Relations between Ricci Curvature and Shape Operator for Submanifolds with Arbitrary Codimensions [J]. Glasg Math J ,1999 , 41(1) : 33-41.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部