期刊文献+

基于极坐标特征的改进模糊C-均值虹膜定位算法

Improved FCM Algorithm Based on Polar Coordinates Transformation for Iris Location
下载PDF
导出
摘要 针对非理想情况下虹膜图像定位失败的问题,提出一种新的虹膜定位算法.该算法先使用基于极坐标特征的改进模糊C-均值算法对虹膜外圆半径进行粗定位,再采用圆周差分法对外圆参数进行准确计算.该算法通过使用极坐标作为聚类特征及放宽模糊聚类的聚类条件,提高了虹膜定位算法的鲁棒性.实验结果表明,该方法有效提高了非理想情况下虹膜图像的定位精度. A new two-step location approach combing coarse location with fine location was presented for iris location under non-ideal situation.Improved fuzzy C-mean clustering based on polar coordinates transformation was proposed for the coarse iris location and a kind of dynamic circular edge template was adopted by the fine iris location.Having used polar coordinates as clustering attribute and relaxed fuzzy clustering restriction,the proposed algorithm improves the robustness of iris location.The experimental results prove the validity of this approach convincingly.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第3期515-518,共4页 Journal of Jilin University:Science Edition
基金 中国博士后科学基金(批准号:2013M530982) 吉林大学种子基金(批准号:450060491442)
关键词 虹膜定位 虹膜鉴别 极坐标变换 改进的模糊C-均值 iris location iris identification polar coordinates transformation improved fuzzy C-mean
  • 相关文献

参考文献11

  • 1MA Li,TAN Tieniu,WANG Yunhong,et al. Efficient Iris Recognition by Characerizing Key Local Variaition [J]. IEEE Transactions on Image Processing,2004,13(6) :739-750.
  • 2Bowyer K W,Hollingsworth K,Flynn P J. Image Understanding for Iris Biometrics:A Survey [J]. Computer Vision and Image Understanding,2008,110(2) :281-307.
  • 3HE Zhaofeng,TAN Tieniu,SUN Zhenan,et al. Toward Accurate and Fast Iris Segmentation for Iris Biometrics [J].IEEE Trans Pattern Analysis and Machine Intelligence,2009,31(9) :1670-1684.
  • 4Daugman J. High Confidence Visual Recognition of Persons by a Test of Statistical Independence [J]. IEEE Trans Pattern Analysis and Machine Intelligence,1993,15(11): 1148-1161.
  • 5Daugman J. Statistical Richness of Visual Phase Information:Update on Recognizing Persons by Iris Patterns [J]. International Journal of Computer Vision,2001,45(1):25-38.
  • 6Daugman J. How Iris Recognition Works [J]. Circuits and Systems for Video Technology,2004,14(1) :21-30.
  • 7Daugman J. The Importance of Being Random:Statistical Principles of Iris Recognition [J]. Pattern Recognition,2003,36(2):279-291.
  • 8Proenca H,Alexandre L Y. Iris Recognition:Analysis of the Error Rates Regarding the Accuracy of the Segmentation Stage [J]. Image and Vision Computing,2010,28(1) :202-206.
  • 9Jarjes A A,WANG Kuanquan,Mohammed G J. A New Iris Segmentation Method Based on Improved Snake Model and Angular Integral Projection [J]. Research Journal of Applied Science,Engineering and Technology,2011,3(6):558-568.
  • 10Roy K,Bhattacharya P,Suen C Y. Iris Segmentation Using Variational Level Set Method [J]. Optics and Laser in Engineering,2011,49(4):578-588.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部