期刊文献+

基于Snort的多视图网络流量可视化系统 被引量:6

Snort-based multi-view network traffic visualization system
下载PDF
导出
摘要 现今网络恶意行为成爆炸性增长,而传统的基于文本的网络入侵检测系统在面对海量网络数据时存在认知负担过重、交互性不够等问题.网络安全可视化技术则可以将海量数据以图形图像的方式表现出来,在人与数据之间实现图像通信,从而使人能够快速发现网络流量中潜在的安全威胁.本文利用Java可视化工具包实现了一个基于Snort的多视图网络流量可视化系统,该系统能对从数据库中提取出的流量警报数据进行多视图动态展示和交互操作,在一定程度上减轻了网络分析员的负担,加快了查找网络问题的进度. Nowadays malicious behaviors are growing rapidly on the Internet,however,there are some limitations when handle the massive network data by the traditional text-based network intrusion detection system,such as heavy cognitive burden,lack of interaction and so on. Network security visualization techniques can convert massive data into graphic to achieve image communication between man and data communications,people can find the network traffic potential security threats quickly. This paper implements a Snort-based multi-view network traffic visualization system by java visualization toolkit,extracting traffic alerts in the database for multi-view dynamic display and interaction to help network administrators to understand network security posture easily.
出处 《天津理工大学学报》 2014年第2期42-45,共4页 Journal of Tianjin University of Technology
基金 国家自然科学基金(61272450) 滨海新区科技小巨人成长基金(2011-XJR12005)
关键词 入侵检测系统 网络安全可视化 SNORT 多视图 intrusion detection systems network security visualization Snort multi-view
  • 相关文献

参考文献9

  • 1吕良福,张加万,孙济洲,何丕廉,孙立刚.网络安全可视化研究综述[J].计算机应用,2008,28(8):1924-1927. 被引量:23
  • 2Foresti S,Agutter J.VisAlert:From idea to product[C]//Goodall J R,Conti G,Ma K L.Proceedings of the VizSEC 2007 workshop on visualization for computer security.Berlin Heidelberg:Springer,2008:159-174.
  • 3Le Malécot E,Kohara M,Hori Y,et al.Interactively combining 2D and 3D visualization for network traffic monitoring[C]//Proceedings of the 3rd international workshop on Visualization for computer security.New York:ACM,2006:123-127.
  • 4Fu Lu L,Wan Zhang J,Lin Huang M,et al.A new concentric-circle visualization of multi-dimensional data and its application in network security[J].Journal of Visual Languages&Computing,2010,21(4):194-208.
  • 5Visual Analytics Community.VAST challenge 2013:Mini-Challenge3[EB/OL](2013-08-15)[2013-10-23]http://www.vacommunity.org/VAST+Challenge+2013%3A+Mini-Challenge+3.
  • 6Koike H,Ohno K.SnortView:visualization system of snort logs[C]//Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security.New York:ACM,2004:143-147.
  • 7Yin X,Yurcik W,Slagell A.The design of VisFlowConnect-IP:A link analysis system for IP security situational awareness[C]//Third IEEE International Workshop on Information Assurance.Los Alamitos,CA:IEEE Computer Society,2005:141-153.
  • 8Foresti S,Agutter J.VisAlert:from idea to product[C].//VizSEC 2007.Proceedings o f the Workshop on Visualization for Compater Security.Springer Berlin Heidelberg,2008:159-174.
  • 9Harrison L,Hu X,Ying X,et al.Interactive detection of network anomalies via coordinated multiple views[C]//Proceedings of the Seventh International Symposium on Visualization for Cyber Security.New York:ACM,2010:91-101.

二级参考文献33

  • 1McCORMICK B H, DEFANTI T A, BROWN M D. Visualization in scientific computing[J]. Computer Graphics, 1987, 21 (6) : 153-156.
  • 2CARD S K, MACKINLAY J D, SHNIDERMAN B. Readings in information visualization: using vision to think[M]. San Fransisco: Morgan Kaufmann Publishers, 1999
  • 3BECKER R A, EICK S G, WILKS A R. Visualizing network data [J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1(1):16-28
  • 4FORTIER S C, SHOMBERT L A. Network profiling and data visualization[ C]// Proceedings of the 2000 IEEE Workshop on Information Assurance and Security. West Point, NY: IEEE, 2000:166 - 169.
  • 5GIRARDIN L , BRODBECK D . A visual approach for monitoring logs[ EB/OL]. [ 2008 - 07 - 23 ]. http://www. ubilab, org/publications/print versions/pdf/gir98, pdf.
  • 6ERBACHER R F, FRINCKE D. Visualization in detection of intrusions and misuse in large-scale networks[ C]// Information Visualization 2000. Washington DC: IEEE CS Press, 2000:294 -299.
  • 7ERBACHER R F. Visual behaviour characterization for intrusion detection in large scale systems[ EB/OL]. [ 2007 - 08 - 23]. http:// www. cs. albany, edu/-erbacher/publications/SecurityVisPaper2 - VIIP01 color, pdf.
  • 8刘戡.多维数据可视化研究[D].武汉:武汉大学,2002.
  • 9KASEMSRI R R. A survey, taxonomy, and analysis of network security visualization techniques[ D]. USA: Georgia State University, 2005.
  • 10CONTI G, ABDULLAH K. Passive visual fingerprinting of network attack tools[ EB/OL]. [ 2007 - 08 - 23]. http://www. rumint. org/gregeonti/publications/20040617_VizSec_Fingerprinting. pdf.

共引文献22

同被引文献35

  • 1李涛.基于免疫的网络安全风险检测[J].中国科学(E辑),2005,35(8):798-816. 被引量:40
  • 2MARTYR. Applied Security Visualization[M]. New Jersey: Addison- Wesley, 2009.
  • 3BECKER R, EICK S G, WILKS A R. Visualizing Network Data[J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1 (1): 16-28.
  • 4ABDULLAH K, LEE C P, CONTI G, et al. Visualizing Network Data for Intrusion Detection[C]//IEEE. Sixth Annual IEEE SMC, June 15-17, 2005, Maryland, USA. New Jersey: IEEE, 2005: 100-108.
  • 5XIAO Ling, GERTH J, HANRAHAN P. Enbancing Visual Analysis of Network Trattic Using a Knowledge Representation[C]//IEEE. Visual Analytics Science and Technology, 2006 IEEE Symposium On, October 31-November 2, 2006, Baltimore, USA. New Jersey: IEEE, 2006: 107-114.
  • 6PEUQUET D J. It's About Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems[J]. Annals of the Association of american Geographers, 1994, 84(3): 441-461.
  • 7MICHAEL W. Network Flow Analysis[M]. San Francisco: No Starch Press, 2014.
  • 8COLLINS M. Network Security Through Data Analysis: Building Situational Awareness[M]. Sebastopol: O'l~eilly Media, 2014.
  • 9OWED A. Working with Toxclibs [EB/OL]. http://www. creativeapplications.net/processing/workilag-with-toxiclibs- processing-tutorial, 2015-06-20.
  • 10ChinaVis2015[EB/OL].http://chinavis.日u.edu.cn,2015-06-23.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部