期刊文献+

四阶离散边值问题正解的存在性

Existence of positive solutions for a fourth order discrete boundary value problem
下载PDF
导出
摘要 讨论四阶离散边值问题{Δ4 u(t-2)=f(t,u(t)),t∈T2,u(1)=u(T+1)=Δ2 u(0)=Δ2 u(T)=0正解的存在性,其中f:T2×[0,∞)→(-∞,+∞)是连续且下方有界的,T是大于或等于5的正整数,T2={2,3,…,T}.通过线性和算子谱的性质获得正解的先验估计,在此基础上,借助Krasnoselskii-Zabreiko不动点定理给出了四阶离散边值问题正解的存在性结果. The paper is concerned with the existence of positive solutions for the fourth order discrete boundary value problemΔ4 u(t -2) = f (t ,u(t)) , t ∈ T2 , u(1) = u(T + 1) = Δ2 u(0) = Δ2 u(T) = 0 , where f :T2 × [0 ,∞) (- ∞ ,+ ∞) is continuous and bounded below , T is an integer with T≥5 and T2={2 ,3 ,… ,T} . By use of Krasnoselskii-Zabreiko fixed point theorem and priori estimates of positive solution derived by spectral properties of associated linear summation operators , the existence results of positive solution for the four order discrete boundary value problem is given .
作者 王勇
机构地区 江南大学理学院
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期25-28,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(61375004) 江苏省自然科学青年基金资助项目(BK2012109)
关键词 离散边值问题 正解 Krasnoselskii-Zabreiko不动点定理 discrete boundary value problem positive solution Krasnoselskii-Zabreiko fixed point theorem
  • 相关文献

参考文献11

  • 1O'REGAN D. Theory of Singular Boundary ValueProblems[M]. Singapore: World Scientific, 1994.
  • 2MA Ru-yun, XU You-ji. Existence of positive solution for nonlinear fourth-order difference equations [ J]. Computers & Mathematics with Applications, 2010, 59: 3770-3777.
  • 3XU Jia-fa. Positive solutions for a fourth order discrete p-Laplacian boundary value problem [J]. Mathematical Methods in the Applied Sciences, 2013, 36; 2467-2475.
  • 4KRASNOSELSKI M, ZABREIKO P. Geometrical Methods of Nonlinear Analysis [ M]. Berlin: Springer, 1984.
  • 5AGARWAL R, WONG P. Advanced Topics in Difference Equations [ M ]. Kluwer; Academic Publishers, 1997.
  • 6ANDERSON D, AVERY R, PETERSON A. Three positive solutions to a discrete focal boundary- value problem[J]. Journal of Computational and Applied Mathematics, 1998, 88: 103-118.
  • 7HE Zhi-min. On the existence of positive solutions of p-Laplaeian difference equations [ J ]. Journal of Computational and Applied Mathematics, 2003, 161: 193-201.
  • 8LI Yong-kun, LU Ling-hong. Existence of positive solutions of p-Laplacian difference equations [ J ]. Applied Mathematics Letters, 2006, 19: 1019- 1023.
  • 9CHEUNG W, REN Jing-li, WONG P, etal. Multiple positive solutions for discrete nonlocal boundary-value problems [- J ]. Journal of Mathematical Analysis and Applications, 2007, 330: 900-915.
  • 10MERDIVENCI F. Two positive solutions of a boundary-value problem for difference equations[J]. Journal of Difference Equations and Applications, 1995, 1: 263-270.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部