摘要
讨论四阶离散边值问题{Δ4 u(t-2)=f(t,u(t)),t∈T2,u(1)=u(T+1)=Δ2 u(0)=Δ2 u(T)=0正解的存在性,其中f:T2×[0,∞)→(-∞,+∞)是连续且下方有界的,T是大于或等于5的正整数,T2={2,3,…,T}.通过线性和算子谱的性质获得正解的先验估计,在此基础上,借助Krasnoselskii-Zabreiko不动点定理给出了四阶离散边值问题正解的存在性结果.
The paper is concerned with the existence of positive solutions for the fourth order discrete boundary value problemΔ4 u(t -2) = f (t ,u(t)) , t ∈ T2 , u(1) = u(T + 1) = Δ2 u(0) = Δ2 u(T) = 0 , where f :T2 × [0 ,∞) (- ∞ ,+ ∞) is continuous and bounded below , T is an integer with T≥5 and T2={2 ,3 ,… ,T} . By use of Krasnoselskii-Zabreiko fixed point theorem and priori estimates of positive solution derived by spectral properties of associated linear summation operators , the existence results of positive solution for the four order discrete boundary value problem is given .
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2014年第3期25-28,共4页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(61375004)
江苏省自然科学青年基金资助项目(BK2012109)