期刊文献+

基于均匀设计的混凝土浇筑仓最高温度预测模型及应用 被引量:3

Concrete Pouring Block's Highest Temperature Prediction Model and It's Application Based on Uniform Design
下载PDF
导出
摘要 为快速准确地预测施工期间拱坝浇筑仓最高温度,基于均匀设计的思想,挑选某在建混凝土拱坝浇筑仓4因素30水平中30组数据进行试验,以浇筑温度、冷却水流量、冷却水水温、环境气温为输入矢量,实测最高温度为输出矢量,构建了混凝土浇筑仓最高温度神经网络智能预测模型,训练后获得了基于均匀设计的混凝土浇筑仓最高温度预测模型。应用结果表明,该预测模型预测值与实测值吻合较好,运算速度快,可快速准确地预测施工现场的混凝土浇筑仓最高温度,特别适用于施工单位现场即时跟踪监测温度变化规律。 In order to rapidly and accurately predict the concrete pouring block's highest temperature during the construction of arch dam, based on uniform design, 30 sets sample data from concrete pouring block's 4 factors and 30 levels data of a construction concrete arch dam are chosen to do experiment. Selecting pouring temperature, cooling water flow rate, cooling water temperature and environment temperature as input vectors, the highest measured temperature as output vector, the highest temperature neural network intelligent prediction model of concrete pouring block is established. After training the neural network model, the highest temperature prediction model of concrete pouring block is obtained based on uniform design. Application results show that the model's prediction values agree well with the measured values and the operation speed is fast. It can rapidly and accurately predict the highest temperature of concrete pouring block of the construction site. Especially, it is suitable for construction organization to real time monitoring temperature change rule on the construction site.
出处 《水电能源科学》 北大核心 2014年第5期83-85,90,共4页 Water Resources and Power
基金 国家自然科学基金项目(51209124)
关键词 均匀设计 混凝土浇筑仓 最高温度 人工神经网络 预测 uniform design concrete pouring block highest temperature artificial neural network prediction
  • 相关文献

参考文献3

二级参考文献18

  • 1陈芸.拱形桁架最小重量设计中遗传算法的应用[J].河海大学学报(自然科学版),2007,35(2):205-208. 被引量:2
  • 2王元 方开泰.关于均匀分布与试验设计(数论方法)[J].科学通报,1981,26:65-70.
  • 3OLHOFF N, TAYIDR J. On structural optimization[J]. Applied Mechanics, 1983, 50(4b):1139-1151.
  • 4FOLGADO J, RODRIGUES H. Structural optimization with a nonsmooth buckling load criterion[J]. Control Cybernetics, 1998,27(2) : 235-253.
  • 5HAN A E, OLHOFF N. Topology optimization of continuum structures: a review[J]. Applied Mechanics Review, 2001, 54(4):331- 390.
  • 6ZHOU M,ROZVANY G I N. DCOC: an optimality criteria method for large system part Ⅱ : algorithm[J].Structural Optimization, 1992, 6(3) :250-262.
  • 7SCHYITKOWSKI K, ZILLOBER C, ZOTENMANTEL R. Numerical comparison of nonlinear programming algorithms for structural optimization[J]. Structural Optimization, 1994, 7(1) : 1-19.
  • 8CHEN T Y. Improvements of simple genetic algorithm in structural design [ J ]. Intemational Journal for Numerical Methods in Engineering, 1997, 40(7) : 1323-1334.
  • 9朱伯芳.有限单元法原理及应用[M].北京:中国水力水电出版社,1998..
  • 10冯夏庭,周辉,李邵军,陈炳瑞.岩石力学与工程综合集成智能反馈分析方法及应用[J].岩石力学与工程学报,2007,26(9):1737-1744. 被引量:38

共引文献12

同被引文献24

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部