期刊文献+

高维周期尺度函数的双正交性

Biorthogonality of multidimensional periodic scaling functions
下载PDF
导出
摘要 利用转移算子和一致可积性的有关知识 ,讨论了周期小波分析中高维周期尺度函数的双正交性 ,得到了尺度函数双正交的充要条件 .所得结果推广了尺度函数正交性的某些结果 ,在周期小波分析理论及应用的研究中 。 The concept of wavelet was first put forward in 1984.In about 1986,Y.Meyer,happened to construct a real wavelet basis with mathematical method,and soon after that he and S.Mallat established usual method to construct wavelet,Multiresolution Analysis.Since then wavelets analysis has become a kind of science and developed rapidly.Especially,Since I.Daubechies constructed compactly supported orthonormal wavelet in 1988,the research of wavelets analysis and its application have drawn close attention of scholars of various academic fields from all over the world.The application,influence and development of wavelet analysis is unprecedented,and its success is worth notice. In this paper,we discuss biorthogonality of multidimensional periodic scaling functions.Especially,we give a necessary and sufficient condition for biorthogonality of periodic scaling functions which are defined by a family filters.It is very important for us to study the theory and application of periodic wavelets analysis.
作者 薛明志
出处 《商丘师范学院学报》 CAS 2001年第2期43-48,共6页 Journal of Shangqiu Normal University
基金 河南省自然科学基金! ( 0 0 40 5 0 5 0 0 ) 河南省教育厅科学研究计划项目! ( 2 0 0 0 110 0 19)
关键词 周期尺度函数 转移算子 双正交性 一致可积性 周期小波分析 滤波函数簇 无穷乘积收敛 periodic scaling functions transition operator biorthogonality
  • 相关文献

参考文献3

  • 1世界图书出版公司北京公司书讯(Ⅰ)[J]物理,2000(01).
  • 2Chen Hanlin. Wavelets from trigonometric spline approach[J] 1996,Approximation Theory and its Applications(2):99~110
  • 3C. K. Chui,H. N. Mhaskar. On trigonometric wavelets[J] 1993,Constructive Approximation(2-3):167~190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部