期刊文献+

热带气旋与海洋暖涡间的海-气相互作用 被引量:6

Air-Sea Interaction between Tropical Cyclone and Ocean Warm Core Ring
下载PDF
导出
摘要 采用区域海-气耦合模式WRF-sbPOM,设计敏感性试验,通过控制海洋暖涡(WCR)的有无以及暖涡与热带气旋(TC)的相对位置,对理想性TC与WCR间的海-气相互作用进行模拟研究。结果表明,当TC经过WCR后,因为WCR区域较厚的暖水使海表温度在TC经过后并没有明显的降低,削弱了海–气间的负反馈机制,所以TC强度增大。但受作用时间、气旋强度以及WCR处较强流速的影响,TC强度增大的程度不同,移动速度较慢的TC有明显增强,移动速度较快的TC增强不明显。同时TC向海洋中输入大量的机械能,与WCR的反气旋式环流发生相互作用,WCR的形状由最初的圆形变为椭圆形,热容量损失约30%,动能损失约60%。 The air-sea interaction between a tropical cyclone (TC) and an ocean warm core ring (WCR) is studied using a regional air-sea coupled model WRF-sbPOM (Weather Research and Forecasting-Stony Brook Parallel Ocean Model). A set of sensitivity experiments are carried out to examine the mutual response of the TC and the ocean without WCR and with a WCR placed on different locations alone the TC's track. Model results reveal that the TC intensifies when it passes a WCR due to the fact that the sea surface temperature (SST) does not cool sharply because thick thermoeline underneath the WCR suppresses the so-called negative feedback mechanism between the TC and the ocean. The degree of the TC intensification depends on the TC migration speed, TC strength, and the flow velocity of the WCR. The slow-moving TC intensifies sharply, while the fast-moving TC does not. Meanwhile, momentum is transferred from the TC to the ocean, interacting with WCR's anticyclonic flow. The shape of the WCR evolves from circular to ellipse, with ocean heat content loss by 30% and kinetic energy loss by 60%.
作者 刘欣 韦骏
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期456-466,共11页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(41106003)资助
关键词 热带气旋 暖涡 海-气相互作用 WRF-sbPOM tropical cyclone warm core ring air-sea interaction WRF-sbPOM
  • 相关文献

参考文献23

  • 1Chang S W, Anthes R A. Numerical simulation of the ocean's nonlinear baroclinic response to translating hurricanes. J Phys Oceanogr, 1978, 8(3): 468-480.
  • 2Emanuel K A. An air-sea interaction theory for tropical cyclones. Part I : Steady-state maintenance. J Atmos Sci, 1986, 43(6): 585-605.
  • 3Bender M A, Ginis I. Real case simulations of hurricane-ocean interaction using a high resolution coupled model: effects on hurricane intensity. Mon Wea Rev, 2000, 128(4): 917-946.
  • 4Sanford T B, Black P G, Haustein J R, et al. Ocean response to hurricane. Part I : Observations. J Phys Oceanogr, 1987, 17(11): 2065-2083.
  • 5Shay L K, Black P G, Mariano A J, et al. Upper ocean response to hurricane Gilbert. J Geophys Res, 1992, 97(C12): 20227-20248.
  • 6Anthes R A, Chang S W. Response of the hurricane boundary layer to changes in sea surface temperature in a numerical model. J Atmos Sci, 1978, 35(7): 1240-1255.
  • 7Hong X H, Chang S W, Raman S, et al. The interaction between hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon Wea Rev, 2000, 128(5): 1347-1365.
  • 8Jacob S D, Shay L K, Mariano A J, et al. The 3D oceanic mixed layer response to hurricane Gilbert. J Phys Oceanogr, 2000, 30(6): 1407-1429.
  • 9刘广平,胡建宇.南海中尺度涡旋对热带气旋的响应:个例研究[J].台湾海峡,2009,28(3):308-315. 被引量:12
  • 10Hodur R M. The naval research laboratory's coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon Wea Rev, 1997, 125(7):1414-1430.

二级参考文献37

共引文献30

同被引文献42

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部