期刊文献+

热还原制备的石墨烯材料的电容性能 被引量:3

Capacitance behaviors of graphene material prepared via thermal reduction
下载PDF
导出
摘要 用改进的Hummers法,通过热还原快速制备石墨烯电极材料.用XRD、FT-IR、SEM和比表面积测试分析样品的物相组成和微观形貌;用恒流充放电、循环伏安和电化学阻抗谱(EIS)技术研究样品的双电层电容性能.样品具有纳米片层结构,以200 mA/g和300 mA/g的电流在0.1~2.7V充放电,放电比电容分别为124.56 F/g和103.54 F/g;以5~100 mV/s的扫描速率进行循环伏安测试,石墨烯电极表现出良好的双电层电容性能. Graphene electrode material was quickly prepared by the improved Hummers method via thermal reduction. The phase composition and microscopic morphology of the sample were studied by XRD, FT-IR, SEM and specific surface tests. The superca- pacitive behaviors of the sample were investigated by galvanostatic charge-discharge, cyclic voltammetry and electrochemical impe- dance spectroscopy(EIS) techniques. The sample had nano-sheets layered structure, when charged-discharged in 0. 1 - 2. 7 V with the current of 200 mA/g and 300 mA/g,its special discharge capacitance was 124. 56 F/g and 103.54 F/g,respeetively. The gra- phene electrode showed fine supercapacitive behaviors when cyclic vohammetry test was taken under the scan rate of 5 - 100 mV/s.
出处 《电池》 CAS CSCD 北大核心 2014年第2期68-70,共3页 Battery Bimonthly
基金 国家863计划(2013AA0509)
关键词 氧化石墨(GO) 石墨烯 热还原 超级电容器 graphite oxide(GO) graphene thermal reduction supercapacitor
  • 相关文献

参考文献5

  • 1CHENRi-xiong(陈日雄),YuShu-hui(于淑会),SUNRong(孙蓉).超级电容器用石墨烯的制备与性能研究[J].新型化工材料,2012,40(6):66-68.
  • 2袁小亚.石墨烯的制备研究进展[J].无机材料学报,2011,26(6):561-570. 被引量:75
  • 3Du Q L, Zheng M B, Zhang L F, et al. Preparation of graphene sheets[ J]. Electrochim Acta,2010,55 (12) :3 897 - 3 903.
  • 4Stoller M D,Park S,Zhu Y W,et al. Graphene-based uhracapaci- tors [ J ]. Nano Lett,2008,8 ( 10 ) :3 498 - 3 502.
  • 5李晶,赖延清,刘业翔.超级电容器碳电极材料的制备及性能[J].电池,2006,36(5):332-334. 被引量:5

二级参考文献13

共引文献78

同被引文献33

  • 1Schniepp H C, Li J L, Mcallister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J Phys Chem B, 2006,110(17) : 8535.
  • 2Zhu Y, Murali S, Stoller M D, et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors [J]. Carbon,2010,48(7) :2118.
  • 3Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling [J]. J Mater Chem, 2010,20(28) : 5817.
  • 4Chen W, Yan L, Bangal P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide in- duced by microwaves [J]. Carbon, 2010,48(4) : 1146.
  • 5Wu Z S, Ren W, Gao L, et al. Synthesis of high-quality graphene with a pre-determined number of layers [J]. Car- bon,2009,47(2) :493.
  • 6Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfolia- ted graphite oxide [J]. Carbon, 2007,45(7) : 1558.
  • 7Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemi- cal unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. J Am Chem Soc, 2011,133(12) : 4168.
  • 8Li X, Magnuson C W, et al. Large-area graphene single crystals grown by low pressure chemical vapor deposition of methane on coppe [J]. J Am Chem Soc,2011,133(9) :2816.
  • 9Wu Z S, Ren W, et al. Synthesis of high-quality graphene with a predetermined number of layers[J]. Carbon, 2009,47 (2):493.
  • 10Huang N, Lim H, Chia C H, et al. Simple room temperature preparation of high-yield large-area graphene oxide[J]. Int J Nanomed, 2011,6 : 3443.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部