期刊文献+

具有接种疫苗年龄和暂时免疫的SEIVS流行病模型的稳定性

Stability of an SEIVS Epidemic Model with Vaccination-age and Temporary Immunity
下载PDF
导出
摘要 接种策略对阻止和控制流行病传播起着重要作用,考虑接种疫苗年龄和暂时免疫力在现实中更为合理.讨论具有接种疫苗年龄和暂时免疫的SEIVS流行病模型的稳定性,给出阈值条件,证明模型平衡点存在性与稳定性. Vaccination strategy plays an important role in preventing and controlling the spread of the epidemic. It is more reasonable to consider vaccination-age and temporary immunity in reality. This paper studied the stability of an SEIVS epidemic model with vaccination-age and temporary immunity,gave the threshold condition and proved the existence and stability of equilibrium.
出处 《平顶山学院学报》 2014年第2期13-18,共6页 Journal of Pingdingshan University
基金 国家自然科学基金(11271314) 信阳师范学院青年基金(2013-Q-055)
关键词 接种疫苗 模型 再生数 平衡点 稳定性 vaccination model reproductive number equilibrium stability
  • 相关文献

参考文献7

  • 1Moghadelas S M,Gunmel A B.A mathematical study of a model for childhood diseases with non-permanent immunity[J].J Comp Appl Math,2003,157:347-363.
  • 2Anderson R M,May R M.Vaccination against rubella and measles:quantitative investigations of different policies[J].J Hyg Camb,1983,90:259-352.
  • 3Arino J,Mccuskey C C,Driessche D.Global results for an epidemic model with vaccination that exhibits backward bifurcation[J].SIAM J Appl Math,2003,47:260-276.
  • 4Feng Z,Iannelli M,Milnert F.A two trains tuberculosis model with age of infection[J].SIAM J Appl Math,2002,62:1643-1656.
  • 5Driessche P,James W.Reproduction Numbers and Subthreshold Endemic Eqilibria for Compartmental Models of Disease Transmission[J].Math Biosci,2002,180:29-48.
  • 6Thieme H.Persistence under relaxed point-dissipativity (with applications to an endemic model)[J].SIAM J Math Anal,1999,24:407-435.
  • 7Hale J K.Ordinary Differential Equations[M].New York:John Wiley and Sons,1969.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部