期刊文献+

基因表达式编程用于有机化合物的毒性预测

Gene Expression Programming for Toxicity Prediction of Organic Compounds
下载PDF
导出
摘要 基因表达式编程方法(GEP)是一种新型的数据挖掘和建模工具,应用GEP方法对110个有机化合物的毒性进行了构效关系研究,并与人工神经网络(BP-ANN)和偏最小二乘(PLS)方法比较.结果发现,GEP方法的预测较好,且模型稳定. Gene expression programming( GEP),a relatively new evolutionary algorithm,can be used to data mining and modeling. In this paper,the GEP was applied to quantitative structure-activity relationship( QSAR) analysis of toxicity prediction of organic compounds. The results were compared with those obtained by the artificial neural network and partial least squares. The comparison demonstrated that GEP is a useful tool for QSAR analysis and the models are steady.
出处 《平顶山学院学报》 2014年第2期68-70,共3页 Journal of Pingdingshan University
基金 国家自然科学基金(21175119)
关键词 基因表达式编程 定量构效关系 毒性 gene expression programming quantitative structure-activity relationship toxicity
  • 相关文献

参考文献4

  • 1Ferreira C.Gene expression programming:A new adaptive algorithm for solving problems[J].Complex Systems,2001,13:87-129.
  • 2Shi W M,Zhang X Y,Shen Q.Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming[J].European Journal of Medicinal Chemistry,2010,45:49-54.
  • 3Abraham M H,Rafols C.Factors that influence tadpole narcosis:An LFER analysis[J].J Chem Soc Perkin Trans,1995,2:1843-1851.
  • 4Paulov S.Action of the anti-detonation preparation tert.-butyl methyl ether on the model species Rana temporaria[J].Biologia,1987,42:185-189.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部