期刊文献+

电子舌对橙汁感官品质定量评价研究 被引量:20

Quantitative Evaluation of Orange Juice Sensory Quality using Electronic Tongue
原文传递
导出
摘要 尝试采用电子舌技术对橙汁感官品质进行快速定量评价。试验以3类20种品牌橙汁为研究对象,以人工感官评价结合模糊数学评价橙汁感官品质,获得各个感官指标得分值;同时采集样本的电子舌传感器数据。利用因子分析法确定橙汁各感官指标的权重,根据权重得出橙汁感官品质的总得分。然后对比采用偏最小二乘法和BP神经网络建立电子舌传感器响应值与感官品质总得分值之间的定量预测模型。结果显示,因子分析法可以有效分析不同类型橙汁的感官指标,得到色泽、香气、酸度、甜度、苦涩味、体态的权重分别为0.15、0.06、0.20、0.24、0.15、0.20。当采用主成分数为3,建立的BP神经网络模型效果最优。模型预测集中预测值与参考值的相关系数为0.93;预测集均方根误差为0.20。研究结果可为橙汁感官品质的智能化评价提供参考。 The sensory quality of three kinds of commercial available juice samples(20 brands) was evaluated by sensory evaluation combined with fuzzy mathematics.The samples were also analyzed by using the electronic tongue to obtain the corresponding electronic tongue data.The weight of each sensory indicator of the orange juice was determined using factor analysis method.The total score of the sensory quality was derived based on the weight of each sensory indicator.Subsequently,partial least squares(PLS) and back propagation neural network(BPNN) methods were contradistinctively used to establish the quantitative prediction model between sensor signals and the total score of sensory quality.The results showed that,sensory indicators of different types of orange juice could be effectively analyzed through factor analysis which accurately reflected the quality of the orange juice by the sensory evaluation results.The weights of color,aroma,acidity,sweetness,bitterness,body were 0.15,0.06,0.20,0.24,0.15 and 0.20,respectively.When the number of principal component was 3,the performance of BPNN model was better than PLS.The correlation coefficient(Rp) between the value predicted by the BPNN model and the reference value in the prediction set was 0.93 and the root mean square error of prediction(RMSEP) was 0.20.The results could provide a reference for intelligently evaluation of the sensory quality of orange juice.
出处 《现代食品科技》 EI CAS 北大核心 2014年第5期172-177,共6页 Modern Food Science and Technology
基金 江苏省高校优势学科建设工程资助项目
关键词 电子舌 感官品质 橙汁 模糊数学 因子分析法 偏最小二乘法 支持向量机 electronic tongue sensory quality orange juice fuzzy mathematics factor analysis partial least square support vector machines
  • 相关文献

参考文献12

  • 1Nisida A, Tocchini R, Berbari S, et al. Stability of unpasteurized orange juice stored at 4 ℃ [J]. Coletanea- Instituto De Tecnologia De Alimentos, 1993, 23: 173-173.
  • 2Tian S Y, Deng S P, Chen Z X. Multifrequency large amplitude pulse voltammetry: a novel electrochemical method for electronic tongue [J]. Sensors and Actuators B: Chemical, 2007, 123(2): 1049-1056.
  • 3韩剑众,黄丽娟,顾振宇,邓少平.基于电子舌的鱼肉品质及新鲜度评价[J].农业工程学报,2008,24(12):141-144. 被引量:76
  • 4Ghasemi-Varnamkhasti M, Rodríguez-Méndez M L, Mohtasebi S S, et al. Monitoring the aging of beers using a bioelectronic tongue [J]. Food Control, 2012, 25(1): 216-224.
  • 5吴瑞梅,赵杰文,陈全胜,黄星奕.基于电子舌技术的绿茶滋味品质评价[J].农业工程学报,2011,27(11):378-381. 被引量:60
  • 6Chang C C, Saad B, Surif M, et al. Disposable e-tongue for the assessment of water quality in fish tanks [J]. Sensors, 2008, 8(6): 3665-3677.
  • 7滕炯华,王磊,袁朝辉.基于电子舌技术的果汁饮料识别[J].测控技术,2004,23(11):4-5. 被引量:26
  • 8Bleibaum R N, Stone H, Tan T, et al. Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices [J]. Food Quality and Preference, 2002, 13(6): 409-422.
  • 9Peres A M, Dias L G, Barcelos T P, et al. An electronic tongue for juice level evaluation in non-alcoholic beverages [J]. Procedia Chemistry, 2009, 1(1): 1023-1026.
  • 10Gao H, Nan H J, Fu S F, et al. Using fuzzy mathematics in sensory evaluation of composite auricularia auricula-jujube beverages [A]. In: Hu, J. Advances in Biomedical Engineering [C]. Hong Kong, PEOPLES R CHINA, 2011: 346-349.

二级参考文献32

共引文献144

同被引文献346

引证文献20

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部