期刊文献+

基于组合方法的复合光源视觉传感器标定 被引量:1

Composite light vision sensor calibration based on combination method
下载PDF
导出
摘要 针对目前现有视觉传感器标定方法专业性强,靶标制作复杂的现状,以及焊后视觉检测用复合光源视觉传感器的应用环境特点,提出一种简便的利用平面模板与改进型锯齿靶标组合的视觉传感器标定方法。该方法首先利用基于平面模板两步法原理开发的Matlab标定工具箱来完成摄像的内部参数与外部参数标定,然后利用获取的内部参数,结合改进的锯齿靶标方法来实现传感器的结构参数标定。试验结果表明,该方法能够实现对复合光源焊后视觉传感器的精确标定,并且标定过程简单方便。 In order to solve the existing calibration problems based on vision sensor such as requirement of speciahzed knowledge for calibration,complicate calibration target procedure,and application environment characteristics of composite light vision sensor in post-weld inspection,a simplified calibration method with compound of planar pattern and improved serrated target was proposed.Firstly,the intrinsic parameters of the camera were calibrated by camera calibration toolbox for Matlab based on the planner pattern two-stage calibration principle.Then the structured parameters of sensor was obtained by the intrinsic parameters results and the improved serrated target calibration method The experimental result shows that this method can calibrate composite light post-weld vision inspection sensor accurately,and the calibration procedure is simple.
作者 黄学斌
出处 《焊接》 北大核心 2014年第5期63-67,76,共5页 Welding & Joining
关键词 平面模板 改进型锯齿靶标 焊后视觉传感器 标定 planner pattern modified serrated target post-weld vision inspection sensor calibration
  • 相关文献

参考文献10

二级参考文献25

  • 1徐光祐,刘立峰,曾建超,石定机.一种新的基于结构光的三维视觉系统标定方法[J].计算机学报,1995,18(6):450-456. 被引量:45
  • 2马颂德 张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1997..
  • 3席小霖 赵凤治.最优化计算法[M].上海科学技术出版社,1983..
  • 4段发阶.计算机视觉检测基础理论应用技术研究,天津大学博士论文[M].-,1994..
  • 5Zhang Z Y. A flexible new technique for camera calibration. In:Seventh International Conference on Computer Vision (ICCV'99), Corfu, Greece, 1999, 1:666~673
  • 6Dewar R. Self-generated targets for spatial calibration of structured light optical sectioning sensors with respect to an external coordinate system. Robots and Vision'88 Conf. Proceedings, Detroit, 1988:5~13
  • 7Huynh D Q. Calibration a structured light stripe system: a novel approach. International Journal of Computer Vision, 1999, 33(1):73~86
  • 8周富强. 双目立体视觉检测的关键技术研究:[博士后研究工作报告]. 北京:北京航空航天大学, 2002
  • 9丘维声.解析几何[M].北京:北京大学出版社,2001..
  • 10Jarvis R A. A perspective on range finding techniques for computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1983, 5(2): 122~139.

共引文献158

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部