期刊文献+

Y型微通道中两相界面特性变化分析 被引量:6

Numerical Analysis on Two-phase Flow Characteristics at Convection Microfluidic Y-junctions
下载PDF
导出
摘要 利用追踪运动界面的两相流模型数值研究对流Y型微通道中两相界面形貌变化特性。发现对流Y型微通道Y型角度、连续相毛细数、两相流量对液滴生成时间、速度、大小有重要影响。其中连续相毛细数与Y型角度越小,所生成的液滴体积越大,而随着分散相与连续相流量比例的增大,其对液滴体积的影响变小,但流量比不能无限增大或减小,当比值大于0.5或小于0.05时,此时分散相只能以液柱或液丝的形式出现,无法产生液滴;当分散相流量越大,相应液滴的生成速度也几乎成比例增大,且分散相流量的变化对液滴长度的演变过程有更大的影响。此外随Y型角度的增加,液滴在形成过程中,填充时间变长,缩颈时间变短,液滴脱离机理主要是因为来自连续相正应力的作用。 Numerical simulation on two-phase flow characteristics at convection microfluidic Y-junctions based on the two-phase flow interface tracking method. It is found that the Y-angle of the microfiuidic Y-junctions, capillary number of continuous phase, and the flux of two phases have a great infuence on droplet generation time, rate and size. The decreasing of continuous phase capillary number and Y-angle results in the increasing of the droplet volume. At the same time, with the increasing of flux ratio of the dispersed phase and continuous phase, the influence on the droplet volume is becoming smaller. But the flow flux ratio cannot infinite increase or decrease. Because the dispersed phase can only takes the form of liquid colunm or silk and it unable to generate the droplet when the ratio is greater than 0.5 or no more than 0.05. When the dispersed phase flux is increasing, the corresponding droplet formation rate is almost proportional increasing; the influence of the dispersed phase flow on the length of the droplets evolution is greater than the continuous phase. In addition, in the formation process of droplet, the filling time becomes longer and the necking time becomes shorter with the increasing of the Y-angle. The droplet detachment mechanism is mainly under the effect of normal stress of the continuous phase.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第8期189-196,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(11002007 11072001)
关键词 对流Y型微通道 微液滴 两相界面形貌变化 数值模拟 convection microfluidic Y-junctions micro-droplets two-phase flow characteristics numerical simulation
  • 相关文献

参考文献12

  • 1穆金霞,殷学锋.微通道反应器在合成反应中的应用[J].化学进展,2008,20(1):60-75. 被引量:29
  • 2HAO G,MICHEL H G D,FRIEDER M.Dropletsformation and merging in two-phase flow microfluidics[J].International Journal of Molecular Sciences,2011,12:2572-2597.
  • 3刘赵淼,逄燕,申峰.几何尺寸对矩形微通道液体流动和传热性能的影响[J].机械工程学报,2012,48(16):139-145. 被引量:23
  • 4刘赵淼,王国斌,申峰.基于Navier滑移的油膜缝隙微流动特性数值分析[J].机械工程学报,2011,47(21):104-110. 被引量:19
  • 5LINGLING S,FRIEDER M,ALBERT V D B,at al.Geometry-controlled droplet generation in head-onmicrofluidic devices [J].Applied Physics Letters,2008,93(15):153113-1-153113-3.
  • 6KAWAI A,MATSUMOTO S,KIRIYA H,et al.Development of a microreactor for manufacturing gelparticles without glass selection of diameter[J].TOSOHRes.Technol.Rev.,2003,47:3-9.
  • 7KUBO A,SHINMORI H,TAKEUCHI T.Atrazine-imprinted microspheres prepared using amicrofluidic device[J].Chem.Lett.,2006,35:588-589.
  • 8MAARTJE L J S,JOLET D R,KARIN G P H S,et al.Adescriptive force-baknce model for droplet formation atmicrofluidic Y-Junctions[J].American Institute ofChemical Engineers,2010,56(10):2641-2649.
  • 9MAARTJE L J S,KARIN G P H S,REMKO M B.Microfluidic Y-junctions:A robust emulsification systemwith regard to junction design[J].American Institute ofChemical Engineers,2010,56(7):1946-1949.
  • 10MAARTJE L J S,KARIN G P H S,REMKO M B.Characterization of emulsification at flat microchannel Yjunctions[J].Langmuir,2009,25(6):3396-3401.

二级参考文献190

  • 1尤学一,郑湘君,李丹.微尺度间距平行平板间的流动稳定性问题[J].中国机械工程,2005,16(z1):210-212. 被引量:4
  • 2吴承伟,胡令臣.界面滑移与油膜破裂[J].大连理工大学学报,1993,33(2):172-178. 被引量:10
  • 3周继军,申盛,徐进良,陈勇.微槽道内单相流动阻力与传热特性[J].化工学报,2005,56(10):1849-1855. 被引量:23
  • 4穆金霞,殷学锋,王彦广.在微流控芯片上合成对甲氧基苯甲醛肟[J].高等学校化学学报,2006,27(11):2114-2116. 被引量:3
  • 5SONG H, BRINGER M R, TICE J D, et al. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels[J]. Applied Physics Letters, 2003, 83(22): 4664-4666.
  • 6GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles in a microfluidic T-junetiowscaling and mechanism of break- up [J]. Lab on a Chip, 2006, 6(3):437-446.
  • 7CHRISTOPHER G TAYLOR J A, et al. squeezing-to-dripping F, NOHARUDDIN N N, Experimental observations of the in T-shaped microfluidic junctions [ J ]. Physical Review, E, Statistical, Nonlinear, and Soft Matter Physics, 2008,78(3): 036317.1-036317.12.
  • 8MURSHED S M S, TAN S H, NGUYEN N T, et al. Microdroplet formation of water and nanofluids in heat- induced microfluidic T-junction[J]. Microfluidics and Nanofluidics, 2009, 6(2):253-259.
  • 9MENECH M D, GARSTECKI P, JOUSSE F, et al. Transition from squeezing to dripping in a microuidic T- shaped junction[J]. Journal of Fluid Mechanics, 2008, 595:141-161.
  • 10VAN DER GRAAF S, STEEGMANS M L J, VAN DER SMAN R G M, et al. Droplet formation in a T- shaped microchannel junction: a model system for membrane emulsification [ J ]. Colloid Surface A: Physicochemicat and Engineering Aspects, 2005, 266(1/3) : 106-116.

共引文献73

同被引文献40

引证文献6

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部