期刊文献+

基于改进Chan-Vese模型的图像分割 被引量:4

Image segmentation based on improved Chan-Vese model
下载PDF
导出
摘要 目前基于水平集的图像分割方法很难给出基于全局极值的算法终止条件,而大多采用事先设定迭代次数的方法.本文提出了一种改进的Chan-Vese模型,通过添加水平集函数约束项,使得新模型抑制了水平集函数的取值范围,最终收敛至全局极值,并以此作为算法终止条件,无需事先设定迭代次数.实验结果表明,新模型在其终止条件下,分割结果正确,与传统Chan-Vese模型相比,新模型的收敛速度快3~6倍,且通用性更强. Most methods based on level set do not have the stop criterion based on the global minimum,instead they employ the iteration number as stop criterion.This paper proposes an improved Chan-Vese model,by adding a constrained term,making the functional converge to global minimum,and presents the stop criterion based on global minimum,without setting iteration number in advance.Experimental results show that the proposed model can segment images correctly under the new stop criterion.Compared with the Chan-Vese model,it has a faster convergence,3~6 times faster than Chan-Vese model,and is of good general use.
作者 杨名宇
出处 《液晶与显示》 CAS CSCD 北大核心 2014年第3期473-478,共6页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金(No.61308099)
关键词 图像分割 CHAN-VESE模型 水平集方法 image segmentation Chan-Vese model level set method
  • 相关文献

参考文献4

二级参考文献65

  • 1姜盈,王惠南.真三维立体显示系统中平移体扫描技术研究[J].计算机应用,2006,26(1):135-137. 被引量:12
  • 2刘欣悦,黄廉卿.利用多分辨率直方图特征分类数字X光乳腺图像[J].光学精密工程,2006,14(2):327-332. 被引量:10
  • 3祁俐娜,罗述谦,孙中伟.虚拟现实技术在数字人体数据集中的应用[J].中国医学影像技术,2006,22(9):1289-1292. 被引量:12
  • 4MINTZ G S, NISSEN S E, ANDERSON W D, et al.. ACC clinical expert consensus document on standards for the acquisition, measurement and reporting of intravascular ultrasound studies., a report of the American College of Cardiology task force on clinical expert consensus doeuments[J]. J. Am. Coll. Cardiol. , 2001,37(5) : 1478-1492.
  • 5LUO Z, WANG Y, WANG W. Estimating coronary artery lumen area with optimization-based contour detection [J]. IEEETrans. Med. Imag., 2003,22(4):564-566.
  • 6NOBLE J A, BOUKERROUI D. Ultrasound image segmentation: a survey[J]. IEEE Trans. Med. Imag. , 2006, 25(8) :987-1009.
  • 7GIL D, HERNANDEZ A, RODRIGUEZ O, et al.. Statistical strategy for anisotropic adventitia modelling in IVUS[J]. IEEE Trans. IVied. Imag. , 2006,25(6):768-778.
  • 8CARDINAL M R, MEUNIER J, SOULEZ G, et al.. Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions[J]. IEEE Trans. Med. Imag. ,2006,25(5):590-601.
  • 9BOVENKAMP E G P, DIJKSTRA J, BOSCH J G, et al.. Multi-agent segmentation of IVUS images[J]. Pattern Recognit. , 2004,37(4) : 647-663.
  • 10GIANNOGLOU G D, CHATZIZISIS Y S, KOUTKIAS V, et al.. A novel active contour model for fully automated segmentation of intravascular ultrasound images[J]. Computers in Biology and Medicine, 2007,37 (9):1292- 1302.

共引文献41

同被引文献47

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部