期刊文献+

不同方法制备GDC纳米粉体及其作为SOFC单电池阻挡层的应用研究 被引量:10

GDC Nano-powders Prepared via Different Methods and Their Application as Interlayer for Single Cell of SOFC
下载PDF
导出
摘要 分别以尿素和NH4HCO3为沉淀剂通过沉淀法制备纳米GDC(10 mol%Gd2O3掺杂CeO2)粉体,研究对比两种GDC粉体的形貌及其烧结体的烧结性能和电性能。实验结果表明:以NH4HCO3为沉淀剂制备的粉体呈纳米球形,有利于致密烧结(1380℃烧结可达96%相对密度),适合作为制备SOFC(固体氧化物燃料电池)单电池(NiO+YSZ||YSZ||GDC||LSCF)阻挡层的流延原料。在700℃,以3%H2O+H2为燃料,空气为氧化气体,测得单电池的功率密度为0.66 W/cm2。而以尿素为沉淀剂制备的GDC粉体尺寸较大、产率低且呈类棒状,不利于密堆积,与YSZ的球形形貌迥异导致层与层的结合不紧密,采用同种方法制备及同种条件下测试,其功率密度仅为0.42 W/cm2。 GDC (10mol%Gd2O3 doped CeO2) nano-powder was prepared using urea and NH4HCO3 as precipitants via the method of precipitation.The nanopowder prepared using NH4HCO3 as precipitator had spherical morphology.It could effectively promote sintering densification (the theoretical density sintered at 1380 ℃ could reach 96%) and was appropriate to be used as the material for tape casting the (NiO+YSZ‖YSZ‖GDC‖LSCF) interlayer for single cell of SOFC.The sintering performance and electrical properties of the two kinds of GDC nano-powders were studied.The maximum power density of the single cell was 0.66 W/cm2 when 3%H2O+H2 was used as the fuel and the air as the oxidizing gas at 700 ℃.The GDC nanopowder prepared using urea as the precipitator,large in particle size and low in productivity,had rodlike structure.The morphology,utterly different from the spherical of the YSZ and unfavorable for densely packing,could result in a loose bond between two layers.So the maximum power density of the single cell prepared and tested in the same way was only 0.42 W/cm2.
机构地区 景德镇陶瓷学院
出处 《陶瓷学报》 CAS 北大核心 2014年第2期182-187,共6页 Journal of Ceramics
基金 国家自然科学基金(编号:51162014 51262010) 江西省主要学科学术和技术带头人培养计划项目(编号:20133BCB22009) 江西省重大科技创新项目(编号:20114ACE00300) 江西省高等学校科技落地计划项目(编号:KJLD13072)
关键词 固体氧化物燃料电池 阻挡层 GDC 水系流延 solid oxide fuel cell (SOFC) interlayer GDC aqueous tape casting method
  • 相关文献

参考文献8

二级参考文献153

共引文献85

同被引文献129

  • 1荆波,孙俊才.SOFC多层复合阴极的制备及性能[J].人工晶体学报,2009,38(S1):346-349. 被引量:1
  • 2詹海林,程继贵,孙文周,李培培,甘昀,贺贝贝,徐晨曦.Sc_2O_3-Sm_2O_3共掺杂CeO_2基电解质的电导率和还原稳定性[J].硅酸盐学报,2015,43(2):184-188. 被引量:4
  • 3马志芳,梁广川,梁金生.碱土金属氧化物掺杂氧化铈基电解质材料中的晶格缺陷[J].物理化学学报,2005,21(6):663-667. 被引量:13
  • 4MINH N Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1-4): 271-277.
  • 5STEEL B C H, HEINZEL A. Materials for fuel-cell technologies. Nature, 2001, 414: 345-352.
  • 6ZHU W Z, DEEVI S C. Development of interconnect materials for solid oxide fuel cells[J]. Materials Science and Engineering A, 2003, 348: 227-243.
  • 7SCHOONMAN J, DEKKER J P, BROERS J W, et al. Electrochemical vapor deposition of stabilized zirconia and interconnection materials for solid oxide fuel cells[J]. Solid State Ionics, 1991, 46(3-4): 299-308.
  • 8KUO L J H, VORA S D, SINGHAL S C. Plasma spraying of lanthanum chromite films for solid oxide fuel cell interconnection application[J]. Journal of the American CeramicSociety, 1997, 80(3): 589-593.
  • 9HUI R, WANG Zhenwei, KESLER O, et al. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges[J]. Journal of Power Sources, 2007, 170(2): 308-323.
  • 10WANG Songlin, DONG Yingchao, LIN Bin, et al. Fabrication of dense LaCrO3-based interconnect thin membrane on anode substrates by co-firing[J]. Materials Research Bulletin, 2009, 44(11): 2127-2133.

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部