期刊文献+

基于粒子群的射频识别定位算法 被引量:8

PSO-based RFID positioning algorithm
下载PDF
导出
摘要 针对传统室内定位方法定位精度低、开销大等问题,提出一种基于粒子群的射频识别定位算法。首先采用高斯滤波对读取到的信号强度指示RSSI进行预处理,以减少环境因素对信号的干扰,使RSSI值与标签实际位置相符。其次,以网格排列的参考标签作为辅助,通过引入粒子群优化算法,经多次迭代找出最优值,计算出待定位标签的估计坐标,提高定位精度。最后,采用拉格朗日插值法计算虚拟标签的信号强度指示值,使其更接近于真实标签的值。实验表明,该算法可有效提高定位精度和效率,并减少开销。 In order to solve low positioning accuracy and high cost in traditional positioning methods, the PSO-based RFID positioning approach is proposed. Firstly, aiming at the interference of environmen- tal factors on the signals, Gaussian Smoothing Filter is adopted to preprocess RSSI (Received Signal Strength Indicator) values. Secondly, based on grid-style reference tags,PSO algorithm is introduced to estimate the optimal positions of tracking tags by several iterations, thus improving the positioning racy. Finally,the RSSI values of virtual reference tags are ca ues of real tags. Experimental results lculated by Lagrange demonstrate that the excellent accuracy,high efficiency and low cost in indoor positioning. interpolation, so proposed approac accuas to h has
出处 《计算机工程与科学》 CSCD 北大核心 2014年第5期917-922,共6页 Computer Engineering & Science
基金 广西科技计划资助项目(桂科攻11107006-10) 广西自然科学基金资助项目(桂科自0991240)
关键词 粒子群算法 高斯滤波 RFID室内定位 VIRE 拉格朗日插值 PSO Gaussian filtering RFID indoor positioning VIRE Lagrange interpolation
  • 相关文献

参考文献2

二级参考文献11

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2Adi Shamir.无线电传播简介:专用术语,室内传播和路径损耗计算及实例[J].今日电子,2002(z1):26-30. 被引量:15
  • 3张洁颖,孙懋珩,王侠.基于RSSI和LQI的动态距离估计算法[J].电子测量技术,2007,30(2):142-145. 被引量:59
  • 4Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 5Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 6Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 7Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 8Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 9Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 10Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.

共引文献427

同被引文献53

  • 1孙瑜,范平志.射频识别技术及其在室内定位中的应用[J].计算机应用,2005,25(5):1205-1208. 被引量:76
  • 2Ni L M,Liu Y,Lau Y C,et al.LANDMARC:indoor location sensing using active RFID[J].Wireless Networks,2004,10(6):701-710.
  • 3Zhao Y,Liu Y,Ni L M.VIRE:Active RFID-based localization using virtual reference elimination[C]∥Parallel Processing,2007.ICPP 2007.International Conference on.IEEE,2007:56-56.
  • 4Bergh F,Engelbrecht A P.A new locally convergent particle swarm optimizer[C]∥Proceedings of the IEEE Inte rna tiona l Confe re nce on Syste m s,m a n a nd Cybernetics,2002(7):6-9.
  • 5Den V,Bergh F.An analysis of particle swarm optimizers[D].Pretoria:University of Pretoria,2006.
  • 6Athalye A,Savic V,Bolic M,et al.Novel semi-passive RFID system for indoor localization[J].Sensors Journal IEEE,2013,13(2):528-537.
  • 7Wendland H.Piecewise polynomial,positive definite and compactly supported radial functions of minimal degree[J].Advances in computational Mathematics,1995,4(1):389-396.
  • 8Sun J,Feng B,Xu W.Particle swarm optimization with particles having quantum behavior[C]∥Congress on Evolutionary Computation,2004.
  • 9程卫芳,廖湘科,沈昌祥.有向传感器网络最大覆盖调度算法[J].软件学报,2009,20(4):975-984. 被引量:35
  • 10刘运杰,金明录,崔承毅.基于RSSI的无线传感器网络修正加权质心定位算法[J].传感技术学报,2010,23(5):717-721. 被引量:104

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部