期刊文献+

中心折反射相机标定方法综述 被引量:2

Review of central catadioptric camera calibration methods
下载PDF
导出
摘要 近十几年来,计算机视觉越来越受研究者们的欢迎,特别是全景相机由于其具有较大的视场而被广泛应用到许多领域,包括视频监控、机器人导航、电视电话会议、场景重建以及虚拟现实等。摄像机标定是从二维图像获得三维信息必不可少的一步,摄像机标定结果的好坏直接决定着三维重建结果以及其它计算机视觉应用效果的好坏,所以,研究摄像机的标定方法具有重要的理论研究意义和重要的实际应用价值。这里将2000年到2012年折反射相机标定方法按照标定像的不同分为五大类:基于线的标定、基于二维标定块标定、基于三维点的标定、基于球的标定和自标定,且简要分析其优缺点。 In recent dozen years, computer vision becomes more popular, in which omnidirectional camera has a larger field of view (FOV) and widely been used in many fields,such as:robot navigation, visual surveillance, virtual reality, three-dimensional reconstruction, and so on. Camera calibration is an essential step to obtain three-dimensional geometric information from a two-dimensional image. Camera calibration results directly decide the results of 3-D reconstruction and other computer vision application effect. Hence, the study of such camera calibration method has important theoretical significance and practical applications. The paper classifies these methods from 2000 to 2012, by means of the difference calibration blocks, into five categories:calibration based on line;calibration based on two-dimensional cal- ibration block; calibration based on three-dimensional point; calibration based on balls; self-calibration. And these methods'advantages and disadvantages are analyzed.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第5期951-957,共7页 Computer Engineering & Science
基金 国家自然科学基金天元基金资助项目(10926187) 中央高校基本科研业务费专项资金资助项目(ZZ1019) 国家自然科学青年基金资助项目(11301021)
关键词 球面模型 折反射 相机标定 spherical model catadioptric camera calibration
  • 相关文献

参考文献21

  • 1Baker S, Nayer S. A theory of single-viewpoint catadioptric image formation[J]. International Journal of Computer Vi- sion, 1999, 35(2) :175-196.
  • 2Ying Xiang-hua, Zha Hong-bin. Simultaneously calibrating catadioptric camera and detecting line features using Hough transformation[C]//Proc of IEEE/RSJ International Con- ference on Intelligent Robots and Systems, 2005:1343 -1348.
  • 3Espuuy F, Gil J B. Generic self-calibration of central cam- eras from two rotational flows[J]. International Journal of Computer Vision, 2011, 91(2):131 -145.
  • 4Duan Hui-xian, Wu Yi hong. A calibration method for para catadioptric camera from sphere images[J]. Pattern Recogni tion Letters, 2012, 33(6) :677-684.
  • 5Geyer C, Daniilidis K. A unifying theory for central pano- ramic systems and practical applications[C]//Proc of the 6th European Conference on Computer Vision Part Ⅱ, 2000:445- 461.
  • 6Wu Fu-ehao, Duan Fu-qing, Hu Zhan yi, et al. A new line- ar algorithm for calibrating central catadioptric cameras[J]. Pattern Recognition, 2008,41(10) :3166-3172.
  • 7Ying Xiang hua,Zha Hong-bin. Identical projective geomet ric properties of central catadioptric lines images and sphere images with applications to calibration [J]. International Journal of Computer Vision, 2008, 78(1) :89 -105.
  • 8Barreto J P, Araujo H. Fitting conics to paracatadioptric projections of lines[J]. Computer Vision and Image Under standing, 2006, 101(3) :151-165.
  • 9Sturm P, Barreto J. General imaging geometry for central catadioptric cameras [C]//Proc of European Conference on Computer Vision, 2008 : 609-622.
  • 10Kang S B. Catadioptric self calibration [C]///Proc of the IEEE Conference on Computer Vision and Patten Recogni tion, 2000:201-207.

二级参考文献14

  • 1Ying X, Hu Z, Catadioptric camera calibration using geometric invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1260-1271.
  • 2Kang S B. Catadioptric self-calibration//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA, 2000, 1: 201-207.
  • 3Wu Y, Hu Z. Geometric invariants and applications under eatadioptrie camera model//Proeeedings of the 10th International Conference on Computer Vision. Beijing, China, 2005, 1: 1547-1554.
  • 4Zhang Z. Camera calibration with one-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 892-899.
  • 5Fitzgibbon A, Pilu M, Fisher R B. Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.
  • 6Barreto J P, Araujo H. Paraeatadioptrie camera calibration using lines//Proceedings of the 8th International Conference on Computer Vision. Nice, France, 2003, 2:1359-1365.
  • 7Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press, 2000.
  • 8Geyer C, Daniilidis K. Catadioptrie projective geometry. International Journal of Computer Vision, 2001, 45(3) : 223-243.
  • 9Semple J, Kneebone G. Algebraic Projective Geometry. Oxford: Oxford University Press, 1952.
  • 10Baker S, Nayar S. A theory of single-viewpoint eatadioptrie image formation. International Journal of Computer Vision, 1999, 35(2): 237-251.

共引文献9

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部