期刊文献+

区域经济预测的GPCA和优化小波网络组合模型研究

Study on Prediction Model for Regional Economy Based on GPCA and Optimized WNN
下载PDF
导出
摘要 构建全局主成分分析(GPCA)和优化小波神经网络的组合模型,对中国区域经济发展水平进行预测.首先借助GPCA获得区域经济发展水平的全局主成分分值、综合评价值,作为优化小波网络的输入、目标输出;然后构建遗传-粒子群算法优化的小波网络预测模型.通过仿真,得到较满意的结果,表明区域经济水平预测的组合模型是有效和实用的. The model of Global Principal Component Analysis ( GPCA ) and optimized Wavelet Neural Network ( WNN) was suggested to predict the regional economic development level in China .First, the global principal component scores and the comprehensive evaluation value were obtained by means of GPCA , as the in-put of optimized WNN.Then, the prediction model of GAPSO -WNN was constructed.The result of simulation test proved the validity and practicability of the model .
出处 《佳木斯大学学报(自然科学版)》 CAS 2014年第3期459-461,464,共4页 Journal of Jiamusi University:Natural Science Edition
基金 六安市定向委托皖西学院市级研究项目(2012LW020) 安徽高校省级科学研究项目(KJ2013B332)
关键词 区域经济 全局主成分分析(GPCA) 优化小波网络 组合模型 regional economy global principal component analysis optimized WNN combined model
  • 相关文献

参考文献4

二级参考文献31

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部