期刊文献+

一种噪声无关的图像复原算法研究 被引量:1

RESEARCH ON A NOISE-INDEPENDENT IMAGE RESTORATION ALGORITHM
下载PDF
导出
摘要 目前获取数字图像的方法存在使图像质量明显下降的问题,迫切需要图像复原的方法,对图像进行重建。在已知点扩散函数的情况下,通过摒弃传统的依赖噪声求出增益矩阵的过程,从修复增益矩阵出发,使复原后的图像更接近原始图像。新方法在递推过程中矫正增益滤波偏大或偏小的现象,从而减少因为缺少噪声信息而产生的误差,而且相较于其他迭代算法,该方法时间复杂度较低。实验结果表明新方法可以有效地保证复原图像质量,并提高效率。 In order to solve the problem of manifest degradation in image quality while accessing to digital images,it is urgently need an image restoration technique to reconstruct the image. Under the condition of the point spread function is known,we get rid of the traditional progress of calculating the gain matrix relying on noise,through this and proceeding from restoring the gain matrix,we make the restored image more approaching the original image. The new method rectifies in recursion process the phenomenon of either larger or smaller in gain filtering so that the errors generated caused by lack of noise information are reduced. Moreover,the new algorithm has lower time complex than other iterative algorithms. Experimental result shows that the new method can effectively guarantee the quality of the restored image and raises the efficiency as well.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第5期191-196,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61171159) 国家科技支撑计划课题(2011BAH11B03) 北京市教委科技发展计划项目(201211232023)
关键词 卡尔曼滤波 增益矩阵 噪声估计 迭代算法 噪声 Kalman filter Gain matrix Noise estimation Iterative algorithm Noise
  • 相关文献

参考文献15

  • 1Jong Ho Lee,Yo Sung Ho.High quality non-blind image deconvolution with adaptive regularization [ J ].Journal of visual communication &image representation,2011,22(7):653-663.
  • 2Haruo Hatanaka,Shimpei Fukumoto,Haruhiko Murata,et al.An image stabilization technology for digital still camera based on blind deconvo-lution [ J].IEICE transactions on information and systems,2011,E94:D(5):1082-1089.
  • 3Levin Anat,Weiss Yair,Durand Fredo,et al.Understanding blind de-convolution algorithms[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2354-2367.
  • 4Mohinder S Grewal,James Kain.Kalman filter implementation with im-proved numerical properties[ J].IEEE Transactions on Automatic Con-trol,2010,55(9):2058-2068.
  • 5阮秋琦,阮宇智.数字图像处理[M].2版.电子工业出版社,2007:175-176,209-215.
  • 6阮秋琦.数字图像处理(MATLAB版)[M].电子工业出版社,2005.
  • 7Lorentzen R J,Naevdal G.An iterative ensemble kalman filter[ J ].IEEE Transactions on Automatic Control,2011,56(8):1990-1995.
  • 8Chen C I,Chang G W,Hong R C,et al.Extended real model of kalman filter for time varying harmonics estimation [ J ].IEEE Transactions on Power Delivery,2010,25(1):17-26.
  • 9Mei Wei,Shan Ganlin,Wang Chun Ping,et al.Practical development of the second order extended kalman filter for very long range radar track-ing[ J ].Signal Processing,2011,91(5):1240-1248.
  • 10肖羽.浅谈巴特沃斯滤波器在图像处理中的应用[J].技术与市场,2009,16(5):58-58. 被引量:2

共引文献1

同被引文献19

  • 1Rudin L,Osher S, Fatemi E. Nonlinear total variation based noi re- moval algorithms [ J ]. PhysJca D, 1992,60 ( 1 ) :259- 268.
  • 2Chan T F,Wong C K. Total variation blind deconvolution[ J]. IEEE Trans on Image Processing, 1998,7 ( 3 ) :370-375.
  • 3Money J H, Kang S H. Total variation minimizing blind deconvolution with shock filter reference [ J ]. Imago and Vision Computing, 2008,26(2) :302-314.
  • 4Almeidam S C, Almeidam B. Blind and semi-blind deblurring of natu- ral images[J]. IEEE Yrans on Image Processing,2010,19 ( I ) : 36-52.
  • 5You Y L, Kaveh M. Fourth-order partial differential equations for noise removal [ J ]. IEEE Trans on Image Processing, 2000,19 (10) : 1723-1730.
  • 6Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with application to medical magnetic reso- nance images in space and time[J]. IEEE Trans on Image Pro- eessing,2003,12( 12 ) : 1579-1590.
  • 7Pang Zhifeng,Yang Yufei. A projected gradient algorithm based on the augmented Lagrangian strategy for image restoration and texture extrac- tion[J]. Image and Vision Computing,2011,29(2-3 ) : 117-126.
  • 8Goldstein T, Osher S. The split Bregman algorithm for L1 regularized problem [ J ]. SIAM Journal on Imaging Sciences, 2009,2 ( 2 ) : 323-343.
  • 9Li Weihong,Li Quanli,Gong Weiguo,et al. Total variation blind decan- volution employ split Bregnum iteration[ J ]. Joumal of Visual Com- munication and Image Representation,2012,23(3 ) :409-417.
  • 10Osher S, Rudin L. Feature-oriented image enhancement using shock tlters[ J]. SIAM doumal on Numerical Analysis, 1990,27 ( 4 ) : 919-940.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部