期刊文献+

基于血管增强分割的三维肺结节自动检测 被引量:2

AUTOMATIC 3D LUNG NODULE DETECTION BASED ON ENHANCED VESSEL SEGMENTATION
下载PDF
导出
摘要 在肺结节检测过程中,与肺结节灰度相似的复杂肺部血管结构是干扰肺结节准确检测的一个重要因素。针对这一问题,首先利用基于Hessian矩阵特征值的Frangi多尺度滤波器将大小、形态各异的肺血管结构增强,然后采用模糊C-均值聚类方法将血管分割出来,最后通过去除肺血管,间接得到肺结节图像。实验结果表明,该方法能有效降低血管对肺结节检测的影响,提高肺结节的检测精度。 In lung nodule detection process,the complicated pulmonary vascular structure is an important factor to interfere the lung nodule detection due to its similar gray scale. In light of this problem,we first enhance the structures of pulmonary vessels in different sizes and conformations using the Frangi multiscale filter which is based on Hessian matrix eigenvalue; Then we use fuzzy C-mean clustering method to segment the vessels; Finally,we obtain the lung nodule image indirectly by removing the pulmonary vessels. Experiment results show that the method can effectively reduce the influence of pulmonary vascellum on lung nodule detection,and improve the accuracy of lung nodule detection.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第5期206-209,275,共5页 Computer Applications and Software
基金 国家自然科学基金青年基金项目(61102114) 国家自然科学基金项目(31271067)
关键词 Frangi滤波 血管增强 FCM 肺结节检测 Frangi filtering Vessel enhancement FCM Lung nodule detection
  • 相关文献

参考文献14

  • 1Jemal A,Bray F,Center M M,et al.Global cancer statistics [J/OL].(2011-03-08)[2012-08-27].http://cajoumal,org.
  • 2Armato III S G,Altman M B,Wilkie J,et al.Automated lung nodule classification following automated nodule detection on CT:A serial ap-proach [ J ].Medical Physics,2003,30(6):1188-1197.
  • 3Roy A S,Armato III S G,Wilson A,et al.Automated detection of lung nodules in CT scans:False-positive reduction with the radial-gradient index [ J].Medical Physics,2006,33(4):1133-1140.
  • 4Marten K,Seyfarth T,Auer F,et al.Computer-assisted detection of pul-monary nodules:performance evaluation of an expert knowledge-based detection system in consensus reading with experienced and inexperi-enced chest radiologists [ J ].European Radiology,2004,14:1930-1938.
  • 5Lee Y,Tsai D Y,Hara T,et al.Improvement in automated detection of pulmonary nodules on helical X-ray CT images [J].Proc.SPIE,2004,5370:824-832.
  • 6Lorenz C,Carlsen I C,Buzug T M,et al.Multi-scale line segmentation with automatic estimation of width,contrast and tangential direction in 2D and 3D medical images [ C]//Proceedings of the First Joint Con-ference on Computer "Vision,Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery.London:Springer-Verlag,1997:233-242.
  • 7Shikata H,Hoffman E A,Sonka M.Automated segmentation of pulmo-nary vascular tree from 3D CT images [J].Proc.SPIE Med.Imaging 2004:Physiology,Function,and Structure from Medical Images,2004,5369:107-116.
  • 8Sato Y,Nakajima S,Shiraga N,et al.3D multi-scale line filter for seg-mentation and visualization of curvilinear structures in medical images [ J].Medical Image Analysis,1998,2:143-168.
  • 9Li Q,Sone S,Doi K.Selective enhancement filters for nodules,vessels,and airway walls in two-and three-dimensional CT scans [ J ].Med.Phys.2003,30(8):2040-2051.
  • 10Frangi A F,Niessen W J,Vincken K L,et al.Muhiscale vessel enhance-ment filtering [ C]//In Medical Image Computing and Computer-&:sisted Intervention.Berlin:Springer-Verlag,1998,1496:130-137.

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部