期刊文献+

基于自相似性约束的视频稀疏超分辨率重建 被引量:2

Video Super-resolution Based on Sparse Representation with Non-local Self-similarity Regularization
下载PDF
导出
摘要 通过研究帧间自相似性对图像重建的影响,提出一种自相似性约束的单视频稀疏超分辨率重建算法,以达到保持图像局部结构完整性的同时有效去噪的目的。该算法运用主成分分析PCA训练出适应图像不同局部结构的分类词典;通过帧间光流场的粗略运动估计和帧内帧间的精确块匹配,搜索自相似信息,运用非局部均值NLM滤波,并以此约束稀疏模型。仿真实验表明,提出的算法无论是客观指标,还是主观视觉上都超过了进行比较的几种分辨率提高算法。 By studying the inter-frame self-similarity on the image reconstruction, a method for single video super resolution(SR) based on sparse repre- sentation with self-similarity constraints is proposed in this paper, aimed to maintain structural integrity of local image while de-nose effectively. In this meth- od, the skill of principal component analysis (PCA) is used to learn dictionary of several classes from which different local structure of iraage can adaptively select a sub-dictionary as a sparse domain; the serf-similarity redundant information, which is used for non-local means (NLM) filtering, can be gained through firstly coarse inter-frame motion estimation in the optical flow field, then accurate inter/intra block matching, and to constrain the sparse reconstruc- tion model. Extensive experimental comparisons with sate-of-the-art SR validated the generality and effectiveness of the proposed mathod.
出处 《电视技术》 北大核心 2014年第11期9-14,共6页 Video Engineering
基金 国家自然科学基金项目(61071091 61071166)
关键词 稀疏表示 超分辨率重建 自相似性 主成分分析 词典学习 sparse repre^ntation super resolution self-similarity principal component analysis dictionary learning
  • 相关文献

参考文献21

  • 1江静,张雪松.图像超分辨率重建算法综述[J].红外技术,2012,34(1):24-30. 被引量:31
  • 2史云静,虞涛,朱秀昌.基于训练集分层的图像超分辨率重建[J].电视技术,2012,36(19):18-22. 被引量:3
  • 3ZHANG L,LUKAC R,WU X,et al. PCA-based spatially adaptive de- noising of CFA images for single - sensor digital cameras [ J ]. IEEE Trans. Image Processing,2009,18 (4) :797-812.
  • 4DONG W, SHI G,ZHANG L,et al. Super-resolution with nonlocal regu- larized sparse representation [C]//Proc. SPIE 7744,Visual Communica- tions and Image Processing 2010. [ S. 1. ] :SPIE Press,2010:235-239.
  • 5DONG W ,ZHANG L,SHI G. Centralized sparse representation for image restoration [ C ]//Proc. ICCV 2011. Barcelona, Spain : IEEE Press ,2011 : 1259-1266.
  • 6ZHANG L,DONG W,ZHANG D,et al. Two-stage image denoising by principal component analysis with local pixel grouping[ J ]. Pattern Rec- ognition,2010,43 (4) : 1531-1549.
  • 7DONG W, ZHANG L, SHI G, et al. Image deblurring and super-resolu- tion by adaptive sparse domain selection and adaptive regularization[ J ]. IEEE Trans. Image Processing,2011,20(7) :1838-1857.
  • 8DONG W, ZHANG L, LUKAC R, et al. Sparse representation based image interpolation with nonlocal autoregressive modeling [ J ]. 2013,22 (4) : 1382-1394.
  • 9TSAI R,HUANG T. Multiframe image restoration and registration[J]. Ad- vances in Computer Vision and Image Processing,1984.1 (2) :317-339.
  • 10FARSIU S, ROBINSON M, EIAD M, et al. Fast and robust multi- frame super resolution[ J ]. IEEE Trans. Image Processing, 2004, 13 (10) : 1327-1344.

二级参考文献44

  • 1Tsai R Y, Huang T S. Multiframe image restoration and registration, in Advances ill Computer Vision and Image Processing: JAI Press Inc., 1984: 317-339.
  • 2Kim S P, Bose N K, Valenzuela H M. Recursive reconstruction of high resolution image from noisy undersampled multiframes[J]. IEEE Trans. Acoust. Speech, Signal Processing, 1990, 38:1013-1027.
  • 3Bose N K, Kim H C, Valenzuela H M. Reeursive implementation of total least squares algorithm fbr image reconstruction from noisy, undersampled multiframes. Acoustics, Speech and Signal Processing, Minneapolis[C]//IEEE 1993, pp. 269-272.
  • 4Rhee S H, Kang M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng., 1999, 38(8): 1348-1356.
  • 5John M. Wiltse, John L. Miller. Imagery improvements in staring infrared imagers by employing subpixel microscan[J]. Optical Engineering, 2005,44(5):056401-056409.
  • 6Kim S P, Bose N K. Reconstruction of 2-d bandlimited discrete signals from nonunitbrm samples. Radar and Signal Processing[J]. IEE Proceedings Part F, 1990, 137(3):197-204.
  • 7Katsaggelos A K. Digital image restoration. New York: Springer-Verlag, 1991.
  • 8Schulz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J]. 1EEE Trans. hnage Processing, 1996, 5(6): 996-1011.
  • 9Hardie R C, Barnard K J, Armstrong E E. Joint map registration and high-resolution image estimation using a sequence of undersampled images[J]. IEEE Transactions on Image Processing, 1997, 6(12): 1621-1633.
  • 10Tom B C, Katsaggelos A K. Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images, hnage Processing. Washington, DC[C]// IEEE 1995, 539-542.

共引文献32

同被引文献29

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 3RIEDINGER C, KHEMAKHEM N, CHOLI.ET G. A study of some super resolution techniques in video sequence [ J ]. Technologies of Information and Telecommunications ,2012 (3) : 1-9.
  • 4FREEMANW T,JONES T R, PASZT E C. Example-based super- resolution[ J]. IEEE Computer Graphics and Applications,2002,22 (2) :56-65.
  • 5WAHED M, ELTAWEL G S, EL-KARIM A G. Automatic image registration technique of remote sensing images [ J ] International Journal of Advanced Computer Sciences and Applications, 2013, 4 (2) : 177-187.
  • 6TAKEDA H,MILANFAR P,PROTTER M,et al. Super-resolution without explicit sub-pixel motion estimation[ J]. IEEE Trans. Image Processing,2009,18 (9) : 1958-1975.
  • 7SONG B C, JEONG S C, CHOI Y. Video super-resolution algo- rithm using bi-directional overlapped block motion compensationand on-the-fly dictionary training[J]. IEEE Trans. Circuits and Systems for Video Technology,2011,21 (3) :274-285.
  • 8MALLAT S,YU G. Super-resolution with sparse mixing es- timators[ J]. IEEE transactions on image processing,2009, 19( 11 ) :2889-2900.
  • 9HEDDE P N, NIENHAUS G U. Super-resolution localiza- tion microscopy with photoactivatable fluorescent marker proteins[J]. Protoplasma, 2014, 251(2): 349-362.
  • 10YANG J, LIN Z, COHEN S. Fast image super-resolution based on in-place example regression[ J]. IEEE conference on computer vision & pattern recognition, 2013,9 ( 4 ) : 1059-1066.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部