期刊文献+

一种基于SIFT的照片查重系统的设计与实现 被引量:3

Design and implementation of a photo duplicate checking system based on SIFT
原文传递
导出
摘要 传统的图像检索侧重于查找小规模图像库中的图像,对于海量图像库,其检索效率明显降低,难以提取完整的图像信息.针对上述问题,本文设计并实现了一种基于SIFT的照片查重系统.系统利用SIFT特征点四个边缘角度相对独立的特性对特征点进行分类,可大幅减少匹配过程中需要比较的特征点数量,并使用k-means算法对每一分类中的特征点进行聚类分析,然后对每一聚类的特征点进行汉明编码.匹配完成后根据特征点位置信息分析照片是否经过PS或者重组等修改.实验结果表明,在海量的图像库中进行查询时,本系统比传统的图像检索系统检索精度高,时间复杂度低. The traditional image retrieval focuses on searching images in small-scale image library, and its retrieval efficiency obviously decreases while finding images in huge amounts of image library. It is diffi- cult to extract the complete image information. Considering above problems, this paper designs and real- izes a photo duplicate checking system based on SIFT. The system classifies the SIFT feature point u- sing their four edge Angle^s relatively independence^s feature, which can largely reduce the number of feature points need to be compared in the matching process. After that, it uses the k-means algorithm to carry cluster analysis on feature points in each category, and then hamming code is carried out for the feature point in each cluster. After the match, the article analysis whether the photos had been PS or recombined according to the feature points location. The experimental results show that the system has a high retrieval precision and low time complexity compared with the traditional image retrieval system while querying massive image library.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期489-494,共6页 Journal of Sichuan University(Natural Science Edition)
基金 四川省科技厅科技支撑项目(2012SZ0168)
关键词 照片查重 K-MEANS聚类 汉明编码 Photo duplicate checking SIFT K-means cluster Hamming code
  • 相关文献

参考文献8

二级参考文献28

  • 1朱晓冬,周明全,耿国华,李康.西北大学考古数字博物馆的设计与建立[J].西北大学学报(自然科学版),2004,34(5):522-526. 被引量:19
  • 2韦娜,耿国华,周明全.一种新的文物图像检索方法[J].计算机应用,2005,25(8):1789-1791. 被引量:3
  • 3Lowe D.Distinct Image Features from Scale-invariant Key Points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 4Martinez A M,Benavente R.The AR Face Database[EB/OL].(1998-06-21).http://cobweb.ecn.purdue.edu/-aleix/aleix_face_DB.html.
  • 5Tan Xiaoyan,Chen Songcan,Zhou Zhihua,et al.Face Recognition from a Single Image Per Person:A Survey[J].Pattern Recognition,2006,39(9):1725-1745.
  • 6Martinez A M.Recognizing Imprecisely Localized,Partially Occluded,and Expression Variant Faces from a Single Sample Per Class[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2002,25(6):748-763.
  • 7Tan Xiaoyan,Chen Songcan,Zhou Zhihua,et al.Recognizing Partially Occluded Expression Variant Faces from Single Training Image Per Person with SOM and Soft KNN Ensemble[J].IEEE Trans.on Neural Networks,2005,16(4):875-886.
  • 8Yang Jian,Zhang D,Frangi A F,et al.Two-dimensional PCA:A New Approach to Appearance Based Face Representation and Recognition[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 9Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 10Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.

共引文献99

同被引文献20

  • 1杨福刚,孙同景,庞清乐,孙波.基于SVM和小波的木材纹理分类算法[J].仪器仪表学报,2006,27(z3):2250-2252. 被引量:6
  • 2LOWED G. Object Recognition From Local Scalein Variant Fea-tures [ C ]//Proceesings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999 : 1150 - 1157.
  • 3YU GANG JIANG, JUN YANG,CHONG-WAH NGO. Represen- tation of Key-point-based Semantic Concept Detection Comprehen- sive Study[J]. IEEE transactions on multimedia,2010,12( 1 ) :42 -53.
  • 4LOWED G. Distinctive Image Features From Scaleinvariant Key- points[ J ]. International Journal of Computer Vision 2004,60 (2) : 90 - 110,.
  • 5YAN KE, RAHUL SUKTHANKAR. PCA-SIFT:A More Distinctive Representation for I.oeal Image Descriptors [ C ]//In : Proceedings of the conference on Computer Vision and Pattern Recognition, Washinaton. USA .2004:511 - 517.
  • 6HUANG G B, WANG D. Advances in Extreme Learning Machines ( ELM2010 ) [ J ]. Neuroeomputng,2011,74 ( 16 ) :2411 - 2412.
  • 7高健,黄心汉,彭刚,王敏,吴祖玉.一种简化的SIFT图像特征点提取算法[J].计算机应用研究,2008,25(7):2213-2215. 被引量:31
  • 8顾绍通.甲骨文数字化处理研究述评[J].西华大学学报(自然科学版),2010,29(5):38-42. 被引量:9
  • 9张奇志,周亚丽.基于SIFT特征的单训练样本人脸识别[J].北京信息科技大学学报(自然科学版),2011,26(4):11-14. 被引量:2
  • 10朱飞,王兴起.基于SIFT算法的体育类图像分类与应用研究[J].计算机应用与软件,2011,28(10):231-234. 被引量:13

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部